Evaluate
-10i
Real Part
0
Share
Copied to clipboard
\frac{120}{2i\times 3!}
The factorial of 5 is 120.
\frac{120}{2i\times 6}
The factorial of 3 is 6.
\frac{120}{12i}
Multiply 2i and 6 to get 12i.
\frac{120i}{12i^{2}}
Multiply both numerator and denominator by imaginary unit i.
\frac{120i}{-12}
By definition, i^{2} is -1. Calculate the denominator.
-10i
Divide 120i by -12 to get -10i.
Re(\frac{120}{2i\times 3!})
The factorial of 5 is 120.
Re(\frac{120}{2i\times 6})
The factorial of 3 is 6.
Re(\frac{120}{12i})
Multiply 2i and 6 to get 12i.
Re(\frac{120i}{12i^{2}})
Multiply both numerator and denominator of \frac{120}{12i} by imaginary unit i.
Re(\frac{120i}{-12})
By definition, i^{2} is -1. Calculate the denominator.
Re(-10i)
Divide 120i by -12 to get -10i.
0
The real part of -10i is 0.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}