Evaluate
\frac{40}{243}\approx 0.164609053
Factor
\frac{2 ^ {3} \cdot 5}{3 ^ {5}} = 0.1646090534979424
Share
Copied to clipboard
\frac{120}{2!\times 3!}\times \left(\frac{2}{3}\right)^{2}\times \left(\frac{1}{3}\right)^{3}
The factorial of 5 is 120.
\frac{120}{2\times 3!}\times \left(\frac{2}{3}\right)^{2}\times \left(\frac{1}{3}\right)^{3}
The factorial of 2 is 2.
\frac{120}{2\times 6}\times \left(\frac{2}{3}\right)^{2}\times \left(\frac{1}{3}\right)^{3}
The factorial of 3 is 6.
\frac{120}{12}\times \left(\frac{2}{3}\right)^{2}\times \left(\frac{1}{3}\right)^{3}
Multiply 2 and 6 to get 12.
10\times \left(\frac{2}{3}\right)^{2}\times \left(\frac{1}{3}\right)^{3}
Divide 120 by 12 to get 10.
10\times \frac{4}{9}\times \left(\frac{1}{3}\right)^{3}
Calculate \frac{2}{3} to the power of 2 and get \frac{4}{9}.
\frac{10\times 4}{9}\times \left(\frac{1}{3}\right)^{3}
Express 10\times \frac{4}{9} as a single fraction.
\frac{40}{9}\times \left(\frac{1}{3}\right)^{3}
Multiply 10 and 4 to get 40.
\frac{40}{9}\times \frac{1}{27}
Calculate \frac{1}{3} to the power of 3 and get \frac{1}{27}.
\frac{40\times 1}{9\times 27}
Multiply \frac{40}{9} times \frac{1}{27} by multiplying numerator times numerator and denominator times denominator.
\frac{40}{243}
Do the multiplications in the fraction \frac{40\times 1}{9\times 27}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}