Solve for x
x=\frac{\sqrt{86009}}{28}+\frac{39}{4}\approx 20.224032516
x=-\frac{\sqrt{86009}}{28}+\frac{39}{4}\approx -0.724032516
Graph
Quiz
Quadratic Equation
5 problems similar to:
\frac { 490 } { x } + 28 x - \frac { 900 } { x } - 546 = 0
Share
Copied to clipboard
490+28xx-900+x\left(-546\right)=0
Variable x cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by x.
490+28x^{2}-900+x\left(-546\right)=0
Multiply x and x to get x^{2}.
-410+28x^{2}+x\left(-546\right)=0
Subtract 900 from 490 to get -410.
28x^{2}-546x-410=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-546\right)±\sqrt{\left(-546\right)^{2}-4\times 28\left(-410\right)}}{2\times 28}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 28 for a, -546 for b, and -410 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-546\right)±\sqrt{298116-4\times 28\left(-410\right)}}{2\times 28}
Square -546.
x=\frac{-\left(-546\right)±\sqrt{298116-112\left(-410\right)}}{2\times 28}
Multiply -4 times 28.
x=\frac{-\left(-546\right)±\sqrt{298116+45920}}{2\times 28}
Multiply -112 times -410.
x=\frac{-\left(-546\right)±\sqrt{344036}}{2\times 28}
Add 298116 to 45920.
x=\frac{-\left(-546\right)±2\sqrt{86009}}{2\times 28}
Take the square root of 344036.
x=\frac{546±2\sqrt{86009}}{2\times 28}
The opposite of -546 is 546.
x=\frac{546±2\sqrt{86009}}{56}
Multiply 2 times 28.
x=\frac{2\sqrt{86009}+546}{56}
Now solve the equation x=\frac{546±2\sqrt{86009}}{56} when ± is plus. Add 546 to 2\sqrt{86009}.
x=\frac{\sqrt{86009}}{28}+\frac{39}{4}
Divide 546+2\sqrt{86009} by 56.
x=\frac{546-2\sqrt{86009}}{56}
Now solve the equation x=\frac{546±2\sqrt{86009}}{56} when ± is minus. Subtract 2\sqrt{86009} from 546.
x=-\frac{\sqrt{86009}}{28}+\frac{39}{4}
Divide 546-2\sqrt{86009} by 56.
x=\frac{\sqrt{86009}}{28}+\frac{39}{4} x=-\frac{\sqrt{86009}}{28}+\frac{39}{4}
The equation is now solved.
490+28xx-900+x\left(-546\right)=0
Variable x cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by x.
490+28x^{2}-900+x\left(-546\right)=0
Multiply x and x to get x^{2}.
-410+28x^{2}+x\left(-546\right)=0
Subtract 900 from 490 to get -410.
28x^{2}+x\left(-546\right)=410
Add 410 to both sides. Anything plus zero gives itself.
28x^{2}-546x=410
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{28x^{2}-546x}{28}=\frac{410}{28}
Divide both sides by 28.
x^{2}+\left(-\frac{546}{28}\right)x=\frac{410}{28}
Dividing by 28 undoes the multiplication by 28.
x^{2}-\frac{39}{2}x=\frac{410}{28}
Reduce the fraction \frac{-546}{28} to lowest terms by extracting and canceling out 14.
x^{2}-\frac{39}{2}x=\frac{205}{14}
Reduce the fraction \frac{410}{28} to lowest terms by extracting and canceling out 2.
x^{2}-\frac{39}{2}x+\left(-\frac{39}{4}\right)^{2}=\frac{205}{14}+\left(-\frac{39}{4}\right)^{2}
Divide -\frac{39}{2}, the coefficient of the x term, by 2 to get -\frac{39}{4}. Then add the square of -\frac{39}{4} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{39}{2}x+\frac{1521}{16}=\frac{205}{14}+\frac{1521}{16}
Square -\frac{39}{4} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{39}{2}x+\frac{1521}{16}=\frac{12287}{112}
Add \frac{205}{14} to \frac{1521}{16} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-\frac{39}{4}\right)^{2}=\frac{12287}{112}
Factor x^{2}-\frac{39}{2}x+\frac{1521}{16}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{39}{4}\right)^{2}}=\sqrt{\frac{12287}{112}}
Take the square root of both sides of the equation.
x-\frac{39}{4}=\frac{\sqrt{86009}}{28} x-\frac{39}{4}=-\frac{\sqrt{86009}}{28}
Simplify.
x=\frac{\sqrt{86009}}{28}+\frac{39}{4} x=-\frac{\sqrt{86009}}{28}+\frac{39}{4}
Add \frac{39}{4} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}