Evaluate
\frac{245}{244}\approx 1.004098361
Factor
\frac{5 \cdot 7 ^ {2}}{2 ^ {2} \cdot 61} = 1\frac{1}{244} = 1.0040983606557377
Share
Copied to clipboard
\begin{array}{l}\phantom{488)}\phantom{1}\\488\overline{)490}\\\end{array}
Use the 1^{st} digit 4 from dividend 490
\begin{array}{l}\phantom{488)}0\phantom{2}\\488\overline{)490}\\\end{array}
Since 4 is less than 488, use the next digit 9 from dividend 490 and add 0 to the quotient
\begin{array}{l}\phantom{488)}0\phantom{3}\\488\overline{)490}\\\end{array}
Use the 2^{nd} digit 9 from dividend 490
\begin{array}{l}\phantom{488)}00\phantom{4}\\488\overline{)490}\\\end{array}
Since 49 is less than 488, use the next digit 0 from dividend 490 and add 0 to the quotient
\begin{array}{l}\phantom{488)}00\phantom{5}\\488\overline{)490}\\\end{array}
Use the 3^{rd} digit 0 from dividend 490
\begin{array}{l}\phantom{488)}001\phantom{6}\\488\overline{)490}\\\phantom{488)}\underline{\phantom{}488\phantom{}}\\\phantom{488)99}2\\\end{array}
Find closest multiple of 488 to 490. We see that 1 \times 488 = 488 is the nearest. Now subtract 488 from 490 to get reminder 2. Add 1 to quotient.
\text{Quotient: }1 \text{Reminder: }2
Since 2 is less than 488, stop the division. The reminder is 2. The topmost line 001 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 1.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}