Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image

Similar Problems from Web Search

Share

\frac{\left(49-t^{2}\right)\left(t^{2}+3t\right)}{\left(t^{2}+6t+9\right)\left(t^{2}-4t-21\right)}
Divide \frac{49-t^{2}}{t^{2}+6t+9} by \frac{t^{2}-4t-21}{t^{2}+3t} by multiplying \frac{49-t^{2}}{t^{2}+6t+9} by the reciprocal of \frac{t^{2}-4t-21}{t^{2}+3t}.
\frac{t\left(t-7\right)\left(-t-7\right)\left(t+3\right)}{\left(t-7\right)\left(t+3\right)\left(t+3\right)^{2}}
Factor the expressions that are not already factored.
\frac{t\left(-t-7\right)}{\left(t+3\right)^{2}}
Cancel out \left(t-7\right)\left(t+3\right) in both numerator and denominator.
\frac{-t^{2}-7t}{t^{2}+6t+9}
Expand the expression.
\frac{\left(49-t^{2}\right)\left(t^{2}+3t\right)}{\left(t^{2}+6t+9\right)\left(t^{2}-4t-21\right)}
Divide \frac{49-t^{2}}{t^{2}+6t+9} by \frac{t^{2}-4t-21}{t^{2}+3t} by multiplying \frac{49-t^{2}}{t^{2}+6t+9} by the reciprocal of \frac{t^{2}-4t-21}{t^{2}+3t}.
\frac{t\left(t-7\right)\left(-t-7\right)\left(t+3\right)}{\left(t-7\right)\left(t+3\right)\left(t+3\right)^{2}}
Factor the expressions that are not already factored.
\frac{t\left(-t-7\right)}{\left(t+3\right)^{2}}
Cancel out \left(t-7\right)\left(t+3\right) in both numerator and denominator.
\frac{-t^{2}-7t}{t^{2}+6t+9}
Expand the expression.