Evaluate
28
Factor
2^{2}\times 7
Share
Copied to clipboard
\frac{\frac{49}{3}\times \frac{\sqrt{24}}{\sqrt{343}}}{\sqrt{\frac{1}{42}}}
Rewrite the square root of the division \sqrt{\frac{24}{343}} as the division of square roots \frac{\sqrt{24}}{\sqrt{343}}.
\frac{\frac{49}{3}\times \frac{2\sqrt{6}}{\sqrt{343}}}{\sqrt{\frac{1}{42}}}
Factor 24=2^{2}\times 6. Rewrite the square root of the product \sqrt{2^{2}\times 6} as the product of square roots \sqrt{2^{2}}\sqrt{6}. Take the square root of 2^{2}.
\frac{\frac{49}{3}\times \frac{2\sqrt{6}}{7\sqrt{7}}}{\sqrt{\frac{1}{42}}}
Factor 343=7^{2}\times 7. Rewrite the square root of the product \sqrt{7^{2}\times 7} as the product of square roots \sqrt{7^{2}}\sqrt{7}. Take the square root of 7^{2}.
\frac{\frac{49}{3}\times \frac{2\sqrt{6}\sqrt{7}}{7\left(\sqrt{7}\right)^{2}}}{\sqrt{\frac{1}{42}}}
Rationalize the denominator of \frac{2\sqrt{6}}{7\sqrt{7}} by multiplying numerator and denominator by \sqrt{7}.
\frac{\frac{49}{3}\times \frac{2\sqrt{6}\sqrt{7}}{7\times 7}}{\sqrt{\frac{1}{42}}}
The square of \sqrt{7} is 7.
\frac{\frac{49}{3}\times \frac{2\sqrt{42}}{7\times 7}}{\sqrt{\frac{1}{42}}}
To multiply \sqrt{6} and \sqrt{7}, multiply the numbers under the square root.
\frac{\frac{49}{3}\times \frac{2\sqrt{42}}{49}}{\sqrt{\frac{1}{42}}}
Multiply 7 and 7 to get 49.
\frac{\frac{49\times 2\sqrt{42}}{3\times 49}}{\sqrt{\frac{1}{42}}}
Multiply \frac{49}{3} times \frac{2\sqrt{42}}{49} by multiplying numerator times numerator and denominator times denominator.
\frac{\frac{2\sqrt{42}}{3}}{\sqrt{\frac{1}{42}}}
Cancel out 49 in both numerator and denominator.
\frac{\frac{2\sqrt{42}}{3}}{\frac{\sqrt{1}}{\sqrt{42}}}
Rewrite the square root of the division \sqrt{\frac{1}{42}} as the division of square roots \frac{\sqrt{1}}{\sqrt{42}}.
\frac{\frac{2\sqrt{42}}{3}}{\frac{1}{\sqrt{42}}}
Calculate the square root of 1 and get 1.
\frac{\frac{2\sqrt{42}}{3}}{\frac{\sqrt{42}}{\left(\sqrt{42}\right)^{2}}}
Rationalize the denominator of \frac{1}{\sqrt{42}} by multiplying numerator and denominator by \sqrt{42}.
\frac{\frac{2\sqrt{42}}{3}}{\frac{\sqrt{42}}{42}}
The square of \sqrt{42} is 42.
\frac{2\sqrt{42}\times 42}{3\sqrt{42}}
Divide \frac{2\sqrt{42}}{3} by \frac{\sqrt{42}}{42} by multiplying \frac{2\sqrt{42}}{3} by the reciprocal of \frac{\sqrt{42}}{42}.
2\times 14
Cancel out 3\sqrt{42} in both numerator and denominator.
28
Multiply 2 and 14 to get 28.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}