Evaluate
\frac{16807t^{2}}{10}
Differentiate w.r.t. t
\frac{16807t}{5}
Share
Copied to clipboard
\frac{49t^{2}}{10\times 7^{-3}}
To divide powers of the same base, subtract the denominator's exponent from the numerator's exponent.
\frac{49t^{2}}{10\times \frac{1}{343}}
Calculate 7 to the power of -3 and get \frac{1}{343}.
\frac{49t^{2}}{\frac{10}{343}}
Multiply 10 and \frac{1}{343} to get \frac{10}{343}.
\frac{49t^{2}\times 343}{10}
Divide 49t^{2} by \frac{10}{343} by multiplying 49t^{2} by the reciprocal of \frac{10}{343}.
\frac{16807t^{2}}{10}
Multiply 49 and 343 to get 16807.
\frac{\mathrm{d}}{\mathrm{d}t}(\frac{49}{\frac{10}{343}}t^{-3-\left(-5\right)})
To divide powers of the same base, subtract the denominator's exponent from the numerator's exponent.
\frac{\mathrm{d}}{\mathrm{d}t}(\frac{16807}{10}t^{2})
Do the arithmetic.
2\times \frac{16807}{10}t^{2-1}
The derivative of a polynomial is the sum of the derivatives of its terms. The derivative of a constant term is 0. The derivative of ax^{n} is nax^{n-1}.
\frac{16807}{5}t^{1}
Do the arithmetic.
\frac{16807}{5}t
For any term t, t^{1}=t.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}