Solve for x
x = \frac{\sqrt{1540921} - 61}{60} \approx 19.67230651
x=\frac{-\sqrt{1540921}-61}{60}\approx -21.705639843
Graph
Share
Copied to clipboard
\left(x-210\right)\times 48800=-x\times 24000x
Variable x cannot be equal to any of the values 0,210 since division by zero is not defined. Multiply both sides of the equation by x\left(x-210\right), the least common multiple of x,210-x.
48800x-10248000=-x\times 24000x
Use the distributive property to multiply x-210 by 48800.
48800x-10248000=-x^{2}\times 24000
Multiply x and x to get x^{2}.
48800x-10248000=-24000x^{2}
Multiply -1 and 24000 to get -24000.
48800x-10248000+24000x^{2}=0
Add 24000x^{2} to both sides.
24000x^{2}+48800x-10248000=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-48800±\sqrt{48800^{2}-4\times 24000\left(-10248000\right)}}{2\times 24000}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 24000 for a, 48800 for b, and -10248000 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-48800±\sqrt{2381440000-4\times 24000\left(-10248000\right)}}{2\times 24000}
Square 48800.
x=\frac{-48800±\sqrt{2381440000-96000\left(-10248000\right)}}{2\times 24000}
Multiply -4 times 24000.
x=\frac{-48800±\sqrt{2381440000+983808000000}}{2\times 24000}
Multiply -96000 times -10248000.
x=\frac{-48800±\sqrt{986189440000}}{2\times 24000}
Add 2381440000 to 983808000000.
x=\frac{-48800±800\sqrt{1540921}}{2\times 24000}
Take the square root of 986189440000.
x=\frac{-48800±800\sqrt{1540921}}{48000}
Multiply 2 times 24000.
x=\frac{800\sqrt{1540921}-48800}{48000}
Now solve the equation x=\frac{-48800±800\sqrt{1540921}}{48000} when ± is plus. Add -48800 to 800\sqrt{1540921}.
x=\frac{\sqrt{1540921}-61}{60}
Divide -48800+800\sqrt{1540921} by 48000.
x=\frac{-800\sqrt{1540921}-48800}{48000}
Now solve the equation x=\frac{-48800±800\sqrt{1540921}}{48000} when ± is minus. Subtract 800\sqrt{1540921} from -48800.
x=\frac{-\sqrt{1540921}-61}{60}
Divide -48800-800\sqrt{1540921} by 48000.
x=\frac{\sqrt{1540921}-61}{60} x=\frac{-\sqrt{1540921}-61}{60}
The equation is now solved.
\left(x-210\right)\times 48800=-x\times 24000x
Variable x cannot be equal to any of the values 0,210 since division by zero is not defined. Multiply both sides of the equation by x\left(x-210\right), the least common multiple of x,210-x.
48800x-10248000=-x\times 24000x
Use the distributive property to multiply x-210 by 48800.
48800x-10248000=-x^{2}\times 24000
Multiply x and x to get x^{2}.
48800x-10248000=-24000x^{2}
Multiply -1 and 24000 to get -24000.
48800x-10248000+24000x^{2}=0
Add 24000x^{2} to both sides.
48800x+24000x^{2}=10248000
Add 10248000 to both sides. Anything plus zero gives itself.
24000x^{2}+48800x=10248000
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{24000x^{2}+48800x}{24000}=\frac{10248000}{24000}
Divide both sides by 24000.
x^{2}+\frac{48800}{24000}x=\frac{10248000}{24000}
Dividing by 24000 undoes the multiplication by 24000.
x^{2}+\frac{61}{30}x=\frac{10248000}{24000}
Reduce the fraction \frac{48800}{24000} to lowest terms by extracting and canceling out 800.
x^{2}+\frac{61}{30}x=427
Divide 10248000 by 24000.
x^{2}+\frac{61}{30}x+\left(\frac{61}{60}\right)^{2}=427+\left(\frac{61}{60}\right)^{2}
Divide \frac{61}{30}, the coefficient of the x term, by 2 to get \frac{61}{60}. Then add the square of \frac{61}{60} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+\frac{61}{30}x+\frac{3721}{3600}=427+\frac{3721}{3600}
Square \frac{61}{60} by squaring both the numerator and the denominator of the fraction.
x^{2}+\frac{61}{30}x+\frac{3721}{3600}=\frac{1540921}{3600}
Add 427 to \frac{3721}{3600}.
\left(x+\frac{61}{60}\right)^{2}=\frac{1540921}{3600}
Factor x^{2}+\frac{61}{30}x+\frac{3721}{3600}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{61}{60}\right)^{2}}=\sqrt{\frac{1540921}{3600}}
Take the square root of both sides of the equation.
x+\frac{61}{60}=\frac{\sqrt{1540921}}{60} x+\frac{61}{60}=-\frac{\sqrt{1540921}}{60}
Simplify.
x=\frac{\sqrt{1540921}-61}{60} x=\frac{-\sqrt{1540921}-61}{60}
Subtract \frac{61}{60} from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}