Evaluate
\frac{8}{3}\approx 2.666666667
Factor
\frac{2 ^ {3}}{3} = 2\frac{2}{3} = 2.6666666666666665
Share
Copied to clipboard
\begin{array}{l}\phantom{180)}\phantom{1}\\180\overline{)480}\\\end{array}
Use the 1^{st} digit 4 from dividend 480
\begin{array}{l}\phantom{180)}0\phantom{2}\\180\overline{)480}\\\end{array}
Since 4 is less than 180, use the next digit 8 from dividend 480 and add 0 to the quotient
\begin{array}{l}\phantom{180)}0\phantom{3}\\180\overline{)480}\\\end{array}
Use the 2^{nd} digit 8 from dividend 480
\begin{array}{l}\phantom{180)}00\phantom{4}\\180\overline{)480}\\\end{array}
Since 48 is less than 180, use the next digit 0 from dividend 480 and add 0 to the quotient
\begin{array}{l}\phantom{180)}00\phantom{5}\\180\overline{)480}\\\end{array}
Use the 3^{rd} digit 0 from dividend 480
\begin{array}{l}\phantom{180)}002\phantom{6}\\180\overline{)480}\\\phantom{180)}\underline{\phantom{}360\phantom{}}\\\phantom{180)}120\\\end{array}
Find closest multiple of 180 to 480. We see that 2 \times 180 = 360 is the nearest. Now subtract 360 from 480 to get reminder 120. Add 2 to quotient.
\text{Quotient: }2 \text{Reminder: }120
Since 120 is less than 180, stop the division. The reminder is 120. The topmost line 002 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 2.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}