Solve for x
x=20
x=-\frac{4}{5}=-0.8
Graph
Share
Copied to clipboard
\left(x-4\right)\times 48+\left(x+4\right)\times 48=5\left(x-4\right)\left(x+4\right)
Variable x cannot be equal to any of the values -4,4 since division by zero is not defined. Multiply both sides of the equation by \left(x-4\right)\left(x+4\right), the least common multiple of x+4,x-4.
48x-192+\left(x+4\right)\times 48=5\left(x-4\right)\left(x+4\right)
Use the distributive property to multiply x-4 by 48.
48x-192+48x+192=5\left(x-4\right)\left(x+4\right)
Use the distributive property to multiply x+4 by 48.
96x-192+192=5\left(x-4\right)\left(x+4\right)
Combine 48x and 48x to get 96x.
96x=5\left(x-4\right)\left(x+4\right)
Add -192 and 192 to get 0.
96x=\left(5x-20\right)\left(x+4\right)
Use the distributive property to multiply 5 by x-4.
96x=5x^{2}-80
Use the distributive property to multiply 5x-20 by x+4 and combine like terms.
96x-5x^{2}=-80
Subtract 5x^{2} from both sides.
96x-5x^{2}+80=0
Add 80 to both sides.
-5x^{2}+96x+80=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-96±\sqrt{96^{2}-4\left(-5\right)\times 80}}{2\left(-5\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -5 for a, 96 for b, and 80 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-96±\sqrt{9216-4\left(-5\right)\times 80}}{2\left(-5\right)}
Square 96.
x=\frac{-96±\sqrt{9216+20\times 80}}{2\left(-5\right)}
Multiply -4 times -5.
x=\frac{-96±\sqrt{9216+1600}}{2\left(-5\right)}
Multiply 20 times 80.
x=\frac{-96±\sqrt{10816}}{2\left(-5\right)}
Add 9216 to 1600.
x=\frac{-96±104}{2\left(-5\right)}
Take the square root of 10816.
x=\frac{-96±104}{-10}
Multiply 2 times -5.
x=\frac{8}{-10}
Now solve the equation x=\frac{-96±104}{-10} when ± is plus. Add -96 to 104.
x=-\frac{4}{5}
Reduce the fraction \frac{8}{-10} to lowest terms by extracting and canceling out 2.
x=-\frac{200}{-10}
Now solve the equation x=\frac{-96±104}{-10} when ± is minus. Subtract 104 from -96.
x=20
Divide -200 by -10.
x=-\frac{4}{5} x=20
The equation is now solved.
\left(x-4\right)\times 48+\left(x+4\right)\times 48=5\left(x-4\right)\left(x+4\right)
Variable x cannot be equal to any of the values -4,4 since division by zero is not defined. Multiply both sides of the equation by \left(x-4\right)\left(x+4\right), the least common multiple of x+4,x-4.
48x-192+\left(x+4\right)\times 48=5\left(x-4\right)\left(x+4\right)
Use the distributive property to multiply x-4 by 48.
48x-192+48x+192=5\left(x-4\right)\left(x+4\right)
Use the distributive property to multiply x+4 by 48.
96x-192+192=5\left(x-4\right)\left(x+4\right)
Combine 48x and 48x to get 96x.
96x=5\left(x-4\right)\left(x+4\right)
Add -192 and 192 to get 0.
96x=\left(5x-20\right)\left(x+4\right)
Use the distributive property to multiply 5 by x-4.
96x=5x^{2}-80
Use the distributive property to multiply 5x-20 by x+4 and combine like terms.
96x-5x^{2}=-80
Subtract 5x^{2} from both sides.
-5x^{2}+96x=-80
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{-5x^{2}+96x}{-5}=-\frac{80}{-5}
Divide both sides by -5.
x^{2}+\frac{96}{-5}x=-\frac{80}{-5}
Dividing by -5 undoes the multiplication by -5.
x^{2}-\frac{96}{5}x=-\frac{80}{-5}
Divide 96 by -5.
x^{2}-\frac{96}{5}x=16
Divide -80 by -5.
x^{2}-\frac{96}{5}x+\left(-\frac{48}{5}\right)^{2}=16+\left(-\frac{48}{5}\right)^{2}
Divide -\frac{96}{5}, the coefficient of the x term, by 2 to get -\frac{48}{5}. Then add the square of -\frac{48}{5} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{96}{5}x+\frac{2304}{25}=16+\frac{2304}{25}
Square -\frac{48}{5} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{96}{5}x+\frac{2304}{25}=\frac{2704}{25}
Add 16 to \frac{2304}{25}.
\left(x-\frac{48}{5}\right)^{2}=\frac{2704}{25}
Factor x^{2}-\frac{96}{5}x+\frac{2304}{25}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{48}{5}\right)^{2}}=\sqrt{\frac{2704}{25}}
Take the square root of both sides of the equation.
x-\frac{48}{5}=\frac{52}{5} x-\frac{48}{5}=-\frac{52}{5}
Simplify.
x=20 x=-\frac{4}{5}
Add \frac{48}{5} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}