Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\frac{48\left(5-\sqrt{13}\right)}{\left(5+\sqrt{13}\right)\left(5-\sqrt{13}\right)}
Rationalize the denominator of \frac{48}{5+\sqrt{13}} by multiplying numerator and denominator by 5-\sqrt{13}.
\frac{48\left(5-\sqrt{13}\right)}{5^{2}-\left(\sqrt{13}\right)^{2}}
Consider \left(5+\sqrt{13}\right)\left(5-\sqrt{13}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{48\left(5-\sqrt{13}\right)}{25-13}
Square 5. Square \sqrt{13}.
\frac{48\left(5-\sqrt{13}\right)}{12}
Subtract 13 from 25 to get 12.
4\left(5-\sqrt{13}\right)
Divide 48\left(5-\sqrt{13}\right) by 12 to get 4\left(5-\sqrt{13}\right).
20-4\sqrt{13}
Use the distributive property to multiply 4 by 5-\sqrt{13}.