Evaluate
\frac{77}{15}\approx 5.133333333
Factor
\frac{7 \cdot 11}{3 \cdot 5} = 5\frac{2}{15} = 5.133333333333334
Share
Copied to clipboard
\begin{array}{l}\phantom{90)}\phantom{1}\\90\overline{)462}\\\end{array}
Use the 1^{st} digit 4 from dividend 462
\begin{array}{l}\phantom{90)}0\phantom{2}\\90\overline{)462}\\\end{array}
Since 4 is less than 90, use the next digit 6 from dividend 462 and add 0 to the quotient
\begin{array}{l}\phantom{90)}0\phantom{3}\\90\overline{)462}\\\end{array}
Use the 2^{nd} digit 6 from dividend 462
\begin{array}{l}\phantom{90)}00\phantom{4}\\90\overline{)462}\\\end{array}
Since 46 is less than 90, use the next digit 2 from dividend 462 and add 0 to the quotient
\begin{array}{l}\phantom{90)}00\phantom{5}\\90\overline{)462}\\\end{array}
Use the 3^{rd} digit 2 from dividend 462
\begin{array}{l}\phantom{90)}005\phantom{6}\\90\overline{)462}\\\phantom{90)}\underline{\phantom{}450\phantom{}}\\\phantom{90)9}12\\\end{array}
Find closest multiple of 90 to 462. We see that 5 \times 90 = 450 is the nearest. Now subtract 450 from 462 to get reminder 12. Add 5 to quotient.
\text{Quotient: }5 \text{Reminder: }12
Since 12 is less than 90, stop the division. The reminder is 12. The topmost line 005 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 5.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}