Evaluate
\frac{276}{493}\approx 0.559837728
Factor
\frac{2 ^ {2} \cdot 3 \cdot 23}{17 \cdot 29} = 0.5598377281947262
Share
Copied to clipboard
\frac{46}{35\times \frac{3+1}{3}-\frac{\frac{5\times 2+1}{2}}{\frac{3\times 3+2}{3}}+37}
Multiply 1 and 3 to get 3.
\frac{46}{35\times \frac{4}{3}-\frac{\frac{5\times 2+1}{2}}{\frac{3\times 3+2}{3}}+37}
Add 3 and 1 to get 4.
\frac{46}{\frac{35\times 4}{3}-\frac{\frac{5\times 2+1}{2}}{\frac{3\times 3+2}{3}}+37}
Express 35\times \frac{4}{3} as a single fraction.
\frac{46}{\frac{140}{3}-\frac{\frac{5\times 2+1}{2}}{\frac{3\times 3+2}{3}}+37}
Multiply 35 and 4 to get 140.
\frac{46}{\frac{140}{3}-\frac{\left(5\times 2+1\right)\times 3}{2\left(3\times 3+2\right)}+37}
Divide \frac{5\times 2+1}{2} by \frac{3\times 3+2}{3} by multiplying \frac{5\times 2+1}{2} by the reciprocal of \frac{3\times 3+2}{3}.
\frac{46}{\frac{140}{3}-\frac{\left(10+1\right)\times 3}{2\left(3\times 3+2\right)}+37}
Multiply 5 and 2 to get 10.
\frac{46}{\frac{140}{3}-\frac{11\times 3}{2\left(3\times 3+2\right)}+37}
Add 10 and 1 to get 11.
\frac{46}{\frac{140}{3}-\frac{33}{2\left(3\times 3+2\right)}+37}
Multiply 11 and 3 to get 33.
\frac{46}{\frac{140}{3}-\frac{33}{2\left(9+2\right)}+37}
Multiply 3 and 3 to get 9.
\frac{46}{\frac{140}{3}-\frac{33}{2\times 11}+37}
Add 9 and 2 to get 11.
\frac{46}{\frac{140}{3}-\frac{33}{22}+37}
Multiply 2 and 11 to get 22.
\frac{46}{\frac{140}{3}-\frac{3}{2}+37}
Reduce the fraction \frac{33}{22} to lowest terms by extracting and canceling out 11.
\frac{46}{\frac{280}{6}-\frac{9}{6}+37}
Least common multiple of 3 and 2 is 6. Convert \frac{140}{3} and \frac{3}{2} to fractions with denominator 6.
\frac{46}{\frac{280-9}{6}+37}
Since \frac{280}{6} and \frac{9}{6} have the same denominator, subtract them by subtracting their numerators.
\frac{46}{\frac{271}{6}+37}
Subtract 9 from 280 to get 271.
\frac{46}{\frac{271}{6}+\frac{222}{6}}
Convert 37 to fraction \frac{222}{6}.
\frac{46}{\frac{271+222}{6}}
Since \frac{271}{6} and \frac{222}{6} have the same denominator, add them by adding their numerators.
\frac{46}{\frac{493}{6}}
Add 271 and 222 to get 493.
46\times \frac{6}{493}
Divide 46 by \frac{493}{6} by multiplying 46 by the reciprocal of \frac{493}{6}.
\frac{46\times 6}{493}
Express 46\times \frac{6}{493} as a single fraction.
\frac{276}{493}
Multiply 46 and 6 to get 276.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}