Evaluate
\frac{455}{27}\approx 16.851851852
Factor
\frac{5 \cdot 7 \cdot 13}{3 ^ {3}} = 16\frac{23}{27} = 16.85185185185185
Share
Copied to clipboard
\begin{array}{l}\phantom{27)}\phantom{1}\\27\overline{)455}\\\end{array}
Use the 1^{st} digit 4 from dividend 455
\begin{array}{l}\phantom{27)}0\phantom{2}\\27\overline{)455}\\\end{array}
Since 4 is less than 27, use the next digit 5 from dividend 455 and add 0 to the quotient
\begin{array}{l}\phantom{27)}0\phantom{3}\\27\overline{)455}\\\end{array}
Use the 2^{nd} digit 5 from dividend 455
\begin{array}{l}\phantom{27)}01\phantom{4}\\27\overline{)455}\\\phantom{27)}\underline{\phantom{}27\phantom{9}}\\\phantom{27)}18\\\end{array}
Find closest multiple of 27 to 45. We see that 1 \times 27 = 27 is the nearest. Now subtract 27 from 45 to get reminder 18. Add 1 to quotient.
\begin{array}{l}\phantom{27)}01\phantom{5}\\27\overline{)455}\\\phantom{27)}\underline{\phantom{}27\phantom{9}}\\\phantom{27)}185\\\end{array}
Use the 3^{rd} digit 5 from dividend 455
\begin{array}{l}\phantom{27)}016\phantom{6}\\27\overline{)455}\\\phantom{27)}\underline{\phantom{}27\phantom{9}}\\\phantom{27)}185\\\phantom{27)}\underline{\phantom{}162\phantom{}}\\\phantom{27)9}23\\\end{array}
Find closest multiple of 27 to 185. We see that 6 \times 27 = 162 is the nearest. Now subtract 162 from 185 to get reminder 23. Add 6 to quotient.
\text{Quotient: }16 \text{Reminder: }23
Since 23 is less than 27, stop the division. The reminder is 23. The topmost line 016 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 16.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}