Evaluate
\frac{13}{5}=2.6
Factor
\frac{13}{5} = 2\frac{3}{5} = 2.6
Share
Copied to clipboard
\begin{array}{l}\phantom{175)}\phantom{1}\\175\overline{)455}\\\end{array}
Use the 1^{st} digit 4 from dividend 455
\begin{array}{l}\phantom{175)}0\phantom{2}\\175\overline{)455}\\\end{array}
Since 4 is less than 175, use the next digit 5 from dividend 455 and add 0 to the quotient
\begin{array}{l}\phantom{175)}0\phantom{3}\\175\overline{)455}\\\end{array}
Use the 2^{nd} digit 5 from dividend 455
\begin{array}{l}\phantom{175)}00\phantom{4}\\175\overline{)455}\\\end{array}
Since 45 is less than 175, use the next digit 5 from dividend 455 and add 0 to the quotient
\begin{array}{l}\phantom{175)}00\phantom{5}\\175\overline{)455}\\\end{array}
Use the 3^{rd} digit 5 from dividend 455
\begin{array}{l}\phantom{175)}002\phantom{6}\\175\overline{)455}\\\phantom{175)}\underline{\phantom{}350\phantom{}}\\\phantom{175)}105\\\end{array}
Find closest multiple of 175 to 455. We see that 2 \times 175 = 350 is the nearest. Now subtract 350 from 455 to get reminder 105. Add 2 to quotient.
\text{Quotient: }2 \text{Reminder: }105
Since 105 is less than 175, stop the division. The reminder is 105. The topmost line 002 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 2.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}