Evaluate
\frac{151}{87}\approx 1.735632184
Factor
\frac{151}{3 \cdot 29} = 1\frac{64}{87} = 1.735632183908046
Share
Copied to clipboard
\begin{array}{l}\phantom{261)}\phantom{1}\\261\overline{)453}\\\end{array}
Use the 1^{st} digit 4 from dividend 453
\begin{array}{l}\phantom{261)}0\phantom{2}\\261\overline{)453}\\\end{array}
Since 4 is less than 261, use the next digit 5 from dividend 453 and add 0 to the quotient
\begin{array}{l}\phantom{261)}0\phantom{3}\\261\overline{)453}\\\end{array}
Use the 2^{nd} digit 5 from dividend 453
\begin{array}{l}\phantom{261)}00\phantom{4}\\261\overline{)453}\\\end{array}
Since 45 is less than 261, use the next digit 3 from dividend 453 and add 0 to the quotient
\begin{array}{l}\phantom{261)}00\phantom{5}\\261\overline{)453}\\\end{array}
Use the 3^{rd} digit 3 from dividend 453
\begin{array}{l}\phantom{261)}001\phantom{6}\\261\overline{)453}\\\phantom{261)}\underline{\phantom{}261\phantom{}}\\\phantom{261)}192\\\end{array}
Find closest multiple of 261 to 453. We see that 1 \times 261 = 261 is the nearest. Now subtract 261 from 453 to get reminder 192. Add 1 to quotient.
\text{Quotient: }1 \text{Reminder: }192
Since 192 is less than 261, stop the division. The reminder is 192. The topmost line 001 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 1.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}