Evaluate
\frac{4505689}{30558}\approx 147.447116958
Factor
\frac{53 \cdot 151 \cdot 563}{2 \cdot 3 \cdot 11 \cdot 463} = 147\frac{13663}{30558} = 147.44711695791608
Share
Copied to clipboard
\begin{array}{l}\phantom{30558)}\phantom{1}\\30558\overline{)4505689}\\\end{array}
Use the 1^{st} digit 4 from dividend 4505689
\begin{array}{l}\phantom{30558)}0\phantom{2}\\30558\overline{)4505689}\\\end{array}
Since 4 is less than 30558, use the next digit 5 from dividend 4505689 and add 0 to the quotient
\begin{array}{l}\phantom{30558)}0\phantom{3}\\30558\overline{)4505689}\\\end{array}
Use the 2^{nd} digit 5 from dividend 4505689
\begin{array}{l}\phantom{30558)}00\phantom{4}\\30558\overline{)4505689}\\\end{array}
Since 45 is less than 30558, use the next digit 0 from dividend 4505689 and add 0 to the quotient
\begin{array}{l}\phantom{30558)}00\phantom{5}\\30558\overline{)4505689}\\\end{array}
Use the 3^{rd} digit 0 from dividend 4505689
\begin{array}{l}\phantom{30558)}000\phantom{6}\\30558\overline{)4505689}\\\end{array}
Since 450 is less than 30558, use the next digit 5 from dividend 4505689 and add 0 to the quotient
\begin{array}{l}\phantom{30558)}000\phantom{7}\\30558\overline{)4505689}\\\end{array}
Use the 4^{th} digit 5 from dividend 4505689
\begin{array}{l}\phantom{30558)}0000\phantom{8}\\30558\overline{)4505689}\\\end{array}
Since 4505 is less than 30558, use the next digit 6 from dividend 4505689 and add 0 to the quotient
\begin{array}{l}\phantom{30558)}0000\phantom{9}\\30558\overline{)4505689}\\\end{array}
Use the 5^{th} digit 6 from dividend 4505689
\begin{array}{l}\phantom{30558)}00001\phantom{10}\\30558\overline{)4505689}\\\phantom{30558)}\underline{\phantom{}30558\phantom{99}}\\\phantom{30558)}14498\\\end{array}
Find closest multiple of 30558 to 45056. We see that 1 \times 30558 = 30558 is the nearest. Now subtract 30558 from 45056 to get reminder 14498. Add 1 to quotient.
\begin{array}{l}\phantom{30558)}00001\phantom{11}\\30558\overline{)4505689}\\\phantom{30558)}\underline{\phantom{}30558\phantom{99}}\\\phantom{30558)}144988\\\end{array}
Use the 6^{th} digit 8 from dividend 4505689
\begin{array}{l}\phantom{30558)}000014\phantom{12}\\30558\overline{)4505689}\\\phantom{30558)}\underline{\phantom{}30558\phantom{99}}\\\phantom{30558)}144988\\\phantom{30558)}\underline{\phantom{}122232\phantom{9}}\\\phantom{30558)9}22756\\\end{array}
Find closest multiple of 30558 to 144988. We see that 4 \times 30558 = 122232 is the nearest. Now subtract 122232 from 144988 to get reminder 22756. Add 4 to quotient.
\begin{array}{l}\phantom{30558)}000014\phantom{13}\\30558\overline{)4505689}\\\phantom{30558)}\underline{\phantom{}30558\phantom{99}}\\\phantom{30558)}144988\\\phantom{30558)}\underline{\phantom{}122232\phantom{9}}\\\phantom{30558)9}227569\\\end{array}
Use the 7^{th} digit 9 from dividend 4505689
\begin{array}{l}\phantom{30558)}0000147\phantom{14}\\30558\overline{)4505689}\\\phantom{30558)}\underline{\phantom{}30558\phantom{99}}\\\phantom{30558)}144988\\\phantom{30558)}\underline{\phantom{}122232\phantom{9}}\\\phantom{30558)9}227569\\\phantom{30558)}\underline{\phantom{9}213906\phantom{}}\\\phantom{30558)99}13663\\\end{array}
Find closest multiple of 30558 to 227569. We see that 7 \times 30558 = 213906 is the nearest. Now subtract 213906 from 227569 to get reminder 13663. Add 7 to quotient.
\text{Quotient: }147 \text{Reminder: }13663
Since 13663 is less than 30558, stop the division. The reminder is 13663. The topmost line 0000147 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 147.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}