Evaluate
\frac{5}{4}=1.25
Factor
\frac{5}{2 ^ {2}} = 1\frac{1}{4} = 1.25
Share
Copied to clipboard
\begin{array}{l}\phantom{360)}\phantom{1}\\360\overline{)450}\\\end{array}
Use the 1^{st} digit 4 from dividend 450
\begin{array}{l}\phantom{360)}0\phantom{2}\\360\overline{)450}\\\end{array}
Since 4 is less than 360, use the next digit 5 from dividend 450 and add 0 to the quotient
\begin{array}{l}\phantom{360)}0\phantom{3}\\360\overline{)450}\\\end{array}
Use the 2^{nd} digit 5 from dividend 450
\begin{array}{l}\phantom{360)}00\phantom{4}\\360\overline{)450}\\\end{array}
Since 45 is less than 360, use the next digit 0 from dividend 450 and add 0 to the quotient
\begin{array}{l}\phantom{360)}00\phantom{5}\\360\overline{)450}\\\end{array}
Use the 3^{rd} digit 0 from dividend 450
\begin{array}{l}\phantom{360)}001\phantom{6}\\360\overline{)450}\\\phantom{360)}\underline{\phantom{}360\phantom{}}\\\phantom{360)9}90\\\end{array}
Find closest multiple of 360 to 450. We see that 1 \times 360 = 360 is the nearest. Now subtract 360 from 450 to get reminder 90. Add 1 to quotient.
\text{Quotient: }1 \text{Reminder: }90
Since 90 is less than 360, stop the division. The reminder is 90. The topmost line 001 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 1.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}