Evaluate
\frac{18}{13}\approx 1.384615385
Factor
\frac{2 \cdot 3 ^ {2}}{13} = 1\frac{5}{13} = 1.3846153846153846
Share
Copied to clipboard
\begin{array}{l}\phantom{325)}\phantom{1}\\325\overline{)450}\\\end{array}
Use the 1^{st} digit 4 from dividend 450
\begin{array}{l}\phantom{325)}0\phantom{2}\\325\overline{)450}\\\end{array}
Since 4 is less than 325, use the next digit 5 from dividend 450 and add 0 to the quotient
\begin{array}{l}\phantom{325)}0\phantom{3}\\325\overline{)450}\\\end{array}
Use the 2^{nd} digit 5 from dividend 450
\begin{array}{l}\phantom{325)}00\phantom{4}\\325\overline{)450}\\\end{array}
Since 45 is less than 325, use the next digit 0 from dividend 450 and add 0 to the quotient
\begin{array}{l}\phantom{325)}00\phantom{5}\\325\overline{)450}\\\end{array}
Use the 3^{rd} digit 0 from dividend 450
\begin{array}{l}\phantom{325)}001\phantom{6}\\325\overline{)450}\\\phantom{325)}\underline{\phantom{}325\phantom{}}\\\phantom{325)}125\\\end{array}
Find closest multiple of 325 to 450. We see that 1 \times 325 = 325 is the nearest. Now subtract 325 from 450 to get reminder 125. Add 1 to quotient.
\text{Quotient: }1 \text{Reminder: }125
Since 125 is less than 325, stop the division. The reminder is 125. The topmost line 001 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 1.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}