Solve for x
x = \frac{3 \sqrt{109} + 8}{7} \approx 5.617274218
x=\frac{8-3\sqrt{109}}{7}\approx -3.331559932
Graph
Share
Copied to clipboard
\left(x+4\right)\times 45+\left(x-2\right)\times 15=14\left(x-2\right)\left(x+4\right)
Variable x cannot be equal to any of the values -4,2 since division by zero is not defined. Multiply both sides of the equation by \left(x-2\right)\left(x+4\right), the least common multiple of x-2,x+4.
45x+180+\left(x-2\right)\times 15=14\left(x-2\right)\left(x+4\right)
Use the distributive property to multiply x+4 by 45.
45x+180+15x-30=14\left(x-2\right)\left(x+4\right)
Use the distributive property to multiply x-2 by 15.
60x+180-30=14\left(x-2\right)\left(x+4\right)
Combine 45x and 15x to get 60x.
60x+150=14\left(x-2\right)\left(x+4\right)
Subtract 30 from 180 to get 150.
60x+150=\left(14x-28\right)\left(x+4\right)
Use the distributive property to multiply 14 by x-2.
60x+150=14x^{2}+28x-112
Use the distributive property to multiply 14x-28 by x+4 and combine like terms.
60x+150-14x^{2}=28x-112
Subtract 14x^{2} from both sides.
60x+150-14x^{2}-28x=-112
Subtract 28x from both sides.
32x+150-14x^{2}=-112
Combine 60x and -28x to get 32x.
32x+150-14x^{2}+112=0
Add 112 to both sides.
32x+262-14x^{2}=0
Add 150 and 112 to get 262.
-14x^{2}+32x+262=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-32±\sqrt{32^{2}-4\left(-14\right)\times 262}}{2\left(-14\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -14 for a, 32 for b, and 262 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-32±\sqrt{1024-4\left(-14\right)\times 262}}{2\left(-14\right)}
Square 32.
x=\frac{-32±\sqrt{1024+56\times 262}}{2\left(-14\right)}
Multiply -4 times -14.
x=\frac{-32±\sqrt{1024+14672}}{2\left(-14\right)}
Multiply 56 times 262.
x=\frac{-32±\sqrt{15696}}{2\left(-14\right)}
Add 1024 to 14672.
x=\frac{-32±12\sqrt{109}}{2\left(-14\right)}
Take the square root of 15696.
x=\frac{-32±12\sqrt{109}}{-28}
Multiply 2 times -14.
x=\frac{12\sqrt{109}-32}{-28}
Now solve the equation x=\frac{-32±12\sqrt{109}}{-28} when ± is plus. Add -32 to 12\sqrt{109}.
x=\frac{8-3\sqrt{109}}{7}
Divide -32+12\sqrt{109} by -28.
x=\frac{-12\sqrt{109}-32}{-28}
Now solve the equation x=\frac{-32±12\sqrt{109}}{-28} when ± is minus. Subtract 12\sqrt{109} from -32.
x=\frac{3\sqrt{109}+8}{7}
Divide -32-12\sqrt{109} by -28.
x=\frac{8-3\sqrt{109}}{7} x=\frac{3\sqrt{109}+8}{7}
The equation is now solved.
\left(x+4\right)\times 45+\left(x-2\right)\times 15=14\left(x-2\right)\left(x+4\right)
Variable x cannot be equal to any of the values -4,2 since division by zero is not defined. Multiply both sides of the equation by \left(x-2\right)\left(x+4\right), the least common multiple of x-2,x+4.
45x+180+\left(x-2\right)\times 15=14\left(x-2\right)\left(x+4\right)
Use the distributive property to multiply x+4 by 45.
45x+180+15x-30=14\left(x-2\right)\left(x+4\right)
Use the distributive property to multiply x-2 by 15.
60x+180-30=14\left(x-2\right)\left(x+4\right)
Combine 45x and 15x to get 60x.
60x+150=14\left(x-2\right)\left(x+4\right)
Subtract 30 from 180 to get 150.
60x+150=\left(14x-28\right)\left(x+4\right)
Use the distributive property to multiply 14 by x-2.
60x+150=14x^{2}+28x-112
Use the distributive property to multiply 14x-28 by x+4 and combine like terms.
60x+150-14x^{2}=28x-112
Subtract 14x^{2} from both sides.
60x+150-14x^{2}-28x=-112
Subtract 28x from both sides.
32x+150-14x^{2}=-112
Combine 60x and -28x to get 32x.
32x-14x^{2}=-112-150
Subtract 150 from both sides.
32x-14x^{2}=-262
Subtract 150 from -112 to get -262.
-14x^{2}+32x=-262
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{-14x^{2}+32x}{-14}=-\frac{262}{-14}
Divide both sides by -14.
x^{2}+\frac{32}{-14}x=-\frac{262}{-14}
Dividing by -14 undoes the multiplication by -14.
x^{2}-\frac{16}{7}x=-\frac{262}{-14}
Reduce the fraction \frac{32}{-14} to lowest terms by extracting and canceling out 2.
x^{2}-\frac{16}{7}x=\frac{131}{7}
Reduce the fraction \frac{-262}{-14} to lowest terms by extracting and canceling out 2.
x^{2}-\frac{16}{7}x+\left(-\frac{8}{7}\right)^{2}=\frac{131}{7}+\left(-\frac{8}{7}\right)^{2}
Divide -\frac{16}{7}, the coefficient of the x term, by 2 to get -\frac{8}{7}. Then add the square of -\frac{8}{7} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{16}{7}x+\frac{64}{49}=\frac{131}{7}+\frac{64}{49}
Square -\frac{8}{7} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{16}{7}x+\frac{64}{49}=\frac{981}{49}
Add \frac{131}{7} to \frac{64}{49} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-\frac{8}{7}\right)^{2}=\frac{981}{49}
Factor x^{2}-\frac{16}{7}x+\frac{64}{49}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{8}{7}\right)^{2}}=\sqrt{\frac{981}{49}}
Take the square root of both sides of the equation.
x-\frac{8}{7}=\frac{3\sqrt{109}}{7} x-\frac{8}{7}=-\frac{3\sqrt{109}}{7}
Simplify.
x=\frac{3\sqrt{109}+8}{7} x=\frac{8-3\sqrt{109}}{7}
Add \frac{8}{7} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}