Evaluate
-\frac{38}{391}\approx -0.097186701
Factor
-\frac{38}{391} = -0.09718670076726342
Share
Copied to clipboard
\frac{45\times 49}{46\times 51}-\frac{45}{46}-\frac{3}{51}
Multiply \frac{45}{46} times \frac{49}{51} by multiplying numerator times numerator and denominator times denominator.
\frac{2205}{2346}-\frac{45}{46}-\frac{3}{51}
Do the multiplications in the fraction \frac{45\times 49}{46\times 51}.
\frac{735}{782}-\frac{45}{46}-\frac{3}{51}
Reduce the fraction \frac{2205}{2346} to lowest terms by extracting and canceling out 3.
\frac{735}{782}-\frac{765}{782}-\frac{3}{51}
Least common multiple of 782 and 46 is 782. Convert \frac{735}{782} and \frac{45}{46} to fractions with denominator 782.
\frac{735-765}{782}-\frac{3}{51}
Since \frac{735}{782} and \frac{765}{782} have the same denominator, subtract them by subtracting their numerators.
\frac{-30}{782}-\frac{3}{51}
Subtract 765 from 735 to get -30.
-\frac{15}{391}-\frac{3}{51}
Reduce the fraction \frac{-30}{782} to lowest terms by extracting and canceling out 2.
-\frac{15}{391}-\frac{1}{17}
Reduce the fraction \frac{3}{51} to lowest terms by extracting and canceling out 3.
-\frac{15}{391}-\frac{23}{391}
Least common multiple of 391 and 17 is 391. Convert -\frac{15}{391} and \frac{1}{17} to fractions with denominator 391.
\frac{-15-23}{391}
Since -\frac{15}{391} and \frac{23}{391} have the same denominator, subtract them by subtracting their numerators.
-\frac{38}{391}
Subtract 23 from -15 to get -38.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}