Solve for E
E=2+\frac{88}{5x}
x\neq 0
Solve for x
x=-\frac{88}{5\left(2-E\right)}
E\neq 2
Graph
Share
Copied to clipboard
44=2.5Ex+x\left(-5\right)
Multiply both sides of the equation by x.
2.5Ex+x\left(-5\right)=44
Swap sides so that all variable terms are on the left hand side.
2.5Ex=44-x\left(-5\right)
Subtract x\left(-5\right) from both sides.
2.5Ex=44+5x
Multiply -1 and -5 to get 5.
\frac{5x}{2}E=5x+44
The equation is in standard form.
\frac{2\times \frac{5x}{2}E}{5x}=\frac{2\left(5x+44\right)}{5x}
Divide both sides by 2.5x.
E=\frac{2\left(5x+44\right)}{5x}
Dividing by 2.5x undoes the multiplication by 2.5x.
E=2+\frac{88}{5x}
Divide 5x+44 by 2.5x.
44=2.5Ex+x\left(-5\right)
Variable x cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by x.
2.5Ex+x\left(-5\right)=44
Swap sides so that all variable terms are on the left hand side.
\left(2.5E-5\right)x=44
Combine all terms containing x.
\left(\frac{5E}{2}-5\right)x=44
The equation is in standard form.
\frac{\left(\frac{5E}{2}-5\right)x}{\frac{5E}{2}-5}=\frac{44}{\frac{5E}{2}-5}
Divide both sides by 2.5E-5.
x=\frac{44}{\frac{5E}{2}-5}
Dividing by 2.5E-5 undoes the multiplication by 2.5E-5.
x=\frac{44}{\frac{5E}{2}-5}\text{, }x\neq 0
Variable x cannot be equal to 0.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}