Evaluate
\frac{727324400000}{60511050411}\approx 12.019695495
Factor
\frac{11 \cdot 23 \cdot 7187 \cdot 2 ^ {7} \cdot 5 ^ {5}}{3 \cdot 7 \cdot 101 \cdot 4157 \cdot 6863} = 12\frac{1191795068}{60511050411} = 12.019695494622969
Share
Copied to clipboard
\frac{22}{4157}\left(\frac{0.4\times 10^{6}\times 3}{70+273.15}-\frac{\left(0.1\times 10^{6}+30\times 10^{3}\right)\times 3}{45+273.15}\right)
Reduce the fraction \frac{44}{8314} to lowest terms by extracting and canceling out 2.
\frac{22}{4157}\left(\frac{0.4\times 1000000\times 3}{70+273.15}-\frac{\left(0.1\times 10^{6}+30\times 10^{3}\right)\times 3}{45+273.15}\right)
Calculate 10 to the power of 6 and get 1000000.
\frac{22}{4157}\left(\frac{400000\times 3}{70+273.15}-\frac{\left(0.1\times 10^{6}+30\times 10^{3}\right)\times 3}{45+273.15}\right)
Multiply 0.4 and 1000000 to get 400000.
\frac{22}{4157}\left(\frac{1200000}{70+273.15}-\frac{\left(0.1\times 10^{6}+30\times 10^{3}\right)\times 3}{45+273.15}\right)
Multiply 400000 and 3 to get 1200000.
\frac{22}{4157}\left(\frac{1200000}{343.15}-\frac{\left(0.1\times 10^{6}+30\times 10^{3}\right)\times 3}{45+273.15}\right)
Add 70 and 273.15 to get 343.15.
\frac{22}{4157}\left(\frac{120000000}{34315}-\frac{\left(0.1\times 10^{6}+30\times 10^{3}\right)\times 3}{45+273.15}\right)
Expand \frac{1200000}{343.15} by multiplying both numerator and the denominator by 100.
\frac{22}{4157}\left(\frac{24000000}{6863}-\frac{\left(0.1\times 10^{6}+30\times 10^{3}\right)\times 3}{45+273.15}\right)
Reduce the fraction \frac{120000000}{34315} to lowest terms by extracting and canceling out 5.
\frac{22}{4157}\left(\frac{24000000}{6863}-\frac{\left(0.1\times 1000000+30\times 10^{3}\right)\times 3}{45+273.15}\right)
Calculate 10 to the power of 6 and get 1000000.
\frac{22}{4157}\left(\frac{24000000}{6863}-\frac{\left(100000+30\times 10^{3}\right)\times 3}{45+273.15}\right)
Multiply 0.1 and 1000000 to get 100000.
\frac{22}{4157}\left(\frac{24000000}{6863}-\frac{\left(100000+30\times 1000\right)\times 3}{45+273.15}\right)
Calculate 10 to the power of 3 and get 1000.
\frac{22}{4157}\left(\frac{24000000}{6863}-\frac{\left(100000+30000\right)\times 3}{45+273.15}\right)
Multiply 30 and 1000 to get 30000.
\frac{22}{4157}\left(\frac{24000000}{6863}-\frac{130000\times 3}{45+273.15}\right)
Add 100000 and 30000 to get 130000.
\frac{22}{4157}\left(\frac{24000000}{6863}-\frac{390000}{45+273.15}\right)
Multiply 130000 and 3 to get 390000.
\frac{22}{4157}\left(\frac{24000000}{6863}-\frac{390000}{318.15}\right)
Add 45 and 273.15 to get 318.15.
\frac{22}{4157}\left(\frac{24000000}{6863}-\frac{39000000}{31815}\right)
Expand \frac{390000}{318.15} by multiplying both numerator and the denominator by 100.
\frac{22}{4157}\left(\frac{24000000}{6863}-\frac{2600000}{2121}\right)
Reduce the fraction \frac{39000000}{31815} to lowest terms by extracting and canceling out 15.
\frac{22}{4157}\left(\frac{50904000000}{14556423}-\frac{17843800000}{14556423}\right)
Least common multiple of 6863 and 2121 is 14556423. Convert \frac{24000000}{6863} and \frac{2600000}{2121} to fractions with denominator 14556423.
\frac{22}{4157}\times \frac{50904000000-17843800000}{14556423}
Since \frac{50904000000}{14556423} and \frac{17843800000}{14556423} have the same denominator, subtract them by subtracting their numerators.
\frac{22}{4157}\times \frac{33060200000}{14556423}
Subtract 17843800000 from 50904000000 to get 33060200000.
\frac{22\times 33060200000}{4157\times 14556423}
Multiply \frac{22}{4157} times \frac{33060200000}{14556423} by multiplying numerator times numerator and denominator times denominator.
\frac{727324400000}{60511050411}
Do the multiplications in the fraction \frac{22\times 33060200000}{4157\times 14556423}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}