Evaluate
\frac{11}{6}\approx 1.833333333
Factor
\frac{11}{2 \cdot 3} = 1\frac{5}{6} = 1.8333333333333333
Share
Copied to clipboard
\begin{array}{l}\phantom{24)}\phantom{1}\\24\overline{)44}\\\end{array}
Use the 1^{st} digit 4 from dividend 44
\begin{array}{l}\phantom{24)}0\phantom{2}\\24\overline{)44}\\\end{array}
Since 4 is less than 24, use the next digit 4 from dividend 44 and add 0 to the quotient
\begin{array}{l}\phantom{24)}0\phantom{3}\\24\overline{)44}\\\end{array}
Use the 2^{nd} digit 4 from dividend 44
\begin{array}{l}\phantom{24)}01\phantom{4}\\24\overline{)44}\\\phantom{24)}\underline{\phantom{}24\phantom{}}\\\phantom{24)}20\\\end{array}
Find closest multiple of 24 to 44. We see that 1 \times 24 = 24 is the nearest. Now subtract 24 from 44 to get reminder 20. Add 1 to quotient.
\text{Quotient: }1 \text{Reminder: }20
Since 20 is less than 24, stop the division. The reminder is 20. The topmost line 01 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 1.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}