\frac { 44 \times ( 1 - 54.5 \% - 9.1 \% ) } { 16 } =
Evaluate
1.001
Factor
\frac{7 \cdot 11 \cdot 13}{2 ^ {3} \cdot 5 ^ {3}} = 1\frac{1}{1000} = 1.001
Share
Copied to clipboard
\frac{44\left(1-\frac{545}{1000}-\frac{9.1}{100}\right)}{16}
Expand \frac{54.5}{100} by multiplying both numerator and the denominator by 10.
\frac{44\left(1-\frac{109}{200}-\frac{9.1}{100}\right)}{16}
Reduce the fraction \frac{545}{1000} to lowest terms by extracting and canceling out 5.
\frac{44\left(\frac{200}{200}-\frac{109}{200}-\frac{9.1}{100}\right)}{16}
Convert 1 to fraction \frac{200}{200}.
\frac{44\left(\frac{200-109}{200}-\frac{9.1}{100}\right)}{16}
Since \frac{200}{200} and \frac{109}{200} have the same denominator, subtract them by subtracting their numerators.
\frac{44\left(\frac{91}{200}-\frac{9.1}{100}\right)}{16}
Subtract 109 from 200 to get 91.
\frac{44\left(\frac{91}{200}-\frac{91}{1000}\right)}{16}
Expand \frac{9.1}{100} by multiplying both numerator and the denominator by 10.
\frac{44\left(\frac{455}{1000}-\frac{91}{1000}\right)}{16}
Least common multiple of 200 and 1000 is 1000. Convert \frac{91}{200} and \frac{91}{1000} to fractions with denominator 1000.
\frac{44\times \frac{455-91}{1000}}{16}
Since \frac{455}{1000} and \frac{91}{1000} have the same denominator, subtract them by subtracting their numerators.
\frac{44\times \frac{364}{1000}}{16}
Subtract 91 from 455 to get 364.
\frac{44\times \frac{91}{250}}{16}
Reduce the fraction \frac{364}{1000} to lowest terms by extracting and canceling out 4.
\frac{\frac{44\times 91}{250}}{16}
Express 44\times \frac{91}{250} as a single fraction.
\frac{\frac{4004}{250}}{16}
Multiply 44 and 91 to get 4004.
\frac{\frac{2002}{125}}{16}
Reduce the fraction \frac{4004}{250} to lowest terms by extracting and canceling out 2.
\frac{2002}{125\times 16}
Express \frac{\frac{2002}{125}}{16} as a single fraction.
\frac{2002}{2000}
Multiply 125 and 16 to get 2000.
\frac{1001}{1000}
Reduce the fraction \frac{2002}{2000} to lowest terms by extracting and canceling out 2.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}