Skip to main content
Evaluate
Tick mark Image
Factor
Tick mark Image

Similar Problems from Web Search

Share

\frac{\left(44+4\sqrt{5}\right)\left(\sqrt{10}-\sqrt{2}\right)}{\left(\sqrt{10}+\sqrt{2}\right)\left(\sqrt{10}-\sqrt{2}\right)}
Rationalize the denominator of \frac{44+4\sqrt{5}}{\sqrt{10}+\sqrt{2}} by multiplying numerator and denominator by \sqrt{10}-\sqrt{2}.
\frac{\left(44+4\sqrt{5}\right)\left(\sqrt{10}-\sqrt{2}\right)}{\left(\sqrt{10}\right)^{2}-\left(\sqrt{2}\right)^{2}}
Consider \left(\sqrt{10}+\sqrt{2}\right)\left(\sqrt{10}-\sqrt{2}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(44+4\sqrt{5}\right)\left(\sqrt{10}-\sqrt{2}\right)}{10-2}
Square \sqrt{10}. Square \sqrt{2}.
\frac{\left(44+4\sqrt{5}\right)\left(\sqrt{10}-\sqrt{2}\right)}{8}
Subtract 2 from 10 to get 8.
\frac{44\sqrt{10}-44\sqrt{2}+4\sqrt{5}\sqrt{10}-4\sqrt{5}\sqrt{2}}{8}
Apply the distributive property by multiplying each term of 44+4\sqrt{5} by each term of \sqrt{10}-\sqrt{2}.
\frac{44\sqrt{10}-44\sqrt{2}+4\sqrt{5}\sqrt{5}\sqrt{2}-4\sqrt{5}\sqrt{2}}{8}
Factor 10=5\times 2. Rewrite the square root of the product \sqrt{5\times 2} as the product of square roots \sqrt{5}\sqrt{2}.
\frac{44\sqrt{10}-44\sqrt{2}+4\times 5\sqrt{2}-4\sqrt{5}\sqrt{2}}{8}
Multiply \sqrt{5} and \sqrt{5} to get 5.
\frac{44\sqrt{10}-44\sqrt{2}+20\sqrt{2}-4\sqrt{5}\sqrt{2}}{8}
Multiply 4 and 5 to get 20.
\frac{44\sqrt{10}-24\sqrt{2}-4\sqrt{5}\sqrt{2}}{8}
Combine -44\sqrt{2} and 20\sqrt{2} to get -24\sqrt{2}.
\frac{44\sqrt{10}-24\sqrt{2}-4\sqrt{10}}{8}
To multiply \sqrt{5} and \sqrt{2}, multiply the numbers under the square root.
\frac{40\sqrt{10}-24\sqrt{2}}{8}
Combine 44\sqrt{10} and -4\sqrt{10} to get 40\sqrt{10}.
5\sqrt{10}-3\sqrt{2}
Divide each term of 40\sqrt{10}-24\sqrt{2} by 8 to get 5\sqrt{10}-3\sqrt{2}.