Verify
false
Share
Copied to clipboard
\frac{43}{5}+3-\frac{2\times 1}{5\times 2}\left(-3\left(-\frac{2}{3}\right)-1+\frac{1}{5}\right)+4\left(-\frac{5}{2}\right)=\frac{1}{5}\times \frac{6}{5}
Multiply \frac{2}{5} times \frac{1}{2} by multiplying numerator times numerator and denominator times denominator.
\frac{43}{5}+3-\frac{1}{5}\left(-3\left(-\frac{2}{3}\right)-1+\frac{1}{5}\right)+4\left(-\frac{5}{2}\right)=\frac{1}{5}\times \frac{6}{5}
Cancel out 2 in both numerator and denominator.
\frac{43}{5}+3-\frac{1}{5}\left(2-1+\frac{1}{5}\right)+4\left(-\frac{5}{2}\right)=\frac{1}{5}\times \frac{6}{5}
Multiply -3 times -\frac{2}{3}.
\frac{43}{5}+3-\frac{1}{5}\left(1+\frac{1}{5}\right)+4\left(-\frac{5}{2}\right)=\frac{1}{5}\times \frac{6}{5}
Subtract 1 from 2 to get 1.
\frac{43}{5}+3-\frac{1}{5}\left(\frac{5}{5}+\frac{1}{5}\right)+4\left(-\frac{5}{2}\right)=\frac{1}{5}\times \frac{6}{5}
Convert 1 to fraction \frac{5}{5}.
\frac{43}{5}+3-\frac{1}{5}\times \frac{5+1}{5}+4\left(-\frac{5}{2}\right)=\frac{1}{5}\times \frac{6}{5}
Since \frac{5}{5} and \frac{1}{5} have the same denominator, add them by adding their numerators.
\frac{43}{5}+3-\frac{1}{5}\times \frac{6}{5}+4\left(-\frac{5}{2}\right)=\frac{1}{5}\times \frac{6}{5}
Add 5 and 1 to get 6.
\frac{43}{5}+3-\frac{1\times 6}{5\times 5}+4\left(-\frac{5}{2}\right)=\frac{1}{5}\times \frac{6}{5}
Multiply \frac{1}{5} times \frac{6}{5} by multiplying numerator times numerator and denominator times denominator.
\frac{43}{5}+3-\frac{6}{25}+4\left(-\frac{5}{2}\right)=\frac{1}{5}\times \frac{6}{5}
Do the multiplications in the fraction \frac{1\times 6}{5\times 5}.
\frac{43}{5}+\frac{75}{25}-\frac{6}{25}+4\left(-\frac{5}{2}\right)=\frac{1}{5}\times \frac{6}{5}
Convert 3 to fraction \frac{75}{25}.
\frac{43}{5}+\frac{75-6}{25}+4\left(-\frac{5}{2}\right)=\frac{1}{5}\times \frac{6}{5}
Since \frac{75}{25} and \frac{6}{25} have the same denominator, subtract them by subtracting their numerators.
\frac{43}{5}+\frac{69}{25}+4\left(-\frac{5}{2}\right)=\frac{1}{5}\times \frac{6}{5}
Subtract 6 from 75 to get 69.
\frac{215}{25}+\frac{69}{25}+4\left(-\frac{5}{2}\right)=\frac{1}{5}\times \frac{6}{5}
Least common multiple of 5 and 25 is 25. Convert \frac{43}{5} and \frac{69}{25} to fractions with denominator 25.
\frac{215+69}{25}+4\left(-\frac{5}{2}\right)=\frac{1}{5}\times \frac{6}{5}
Since \frac{215}{25} and \frac{69}{25} have the same denominator, add them by adding their numerators.
\frac{284}{25}+4\left(-\frac{5}{2}\right)=\frac{1}{5}\times \frac{6}{5}
Add 215 and 69 to get 284.
\frac{284}{25}+\frac{4\left(-5\right)}{2}=\frac{1}{5}\times \frac{6}{5}
Express 4\left(-\frac{5}{2}\right) as a single fraction.
\frac{284}{25}+\frac{-20}{2}=\frac{1}{5}\times \frac{6}{5}
Multiply 4 and -5 to get -20.
\frac{284}{25}-10=\frac{1}{5}\times \frac{6}{5}
Divide -20 by 2 to get -10.
\frac{284}{25}-\frac{250}{25}=\frac{1}{5}\times \frac{6}{5}
Convert 10 to fraction \frac{250}{25}.
\frac{284-250}{25}=\frac{1}{5}\times \frac{6}{5}
Since \frac{284}{25} and \frac{250}{25} have the same denominator, subtract them by subtracting their numerators.
\frac{34}{25}=\frac{1}{5}\times \frac{6}{5}
Subtract 250 from 284 to get 34.
\frac{34}{25}=\frac{1\times 6}{5\times 5}
Multiply \frac{1}{5} times \frac{6}{5} by multiplying numerator times numerator and denominator times denominator.
\frac{34}{25}=\frac{6}{25}
Do the multiplications in the fraction \frac{1\times 6}{5\times 5}.
\text{false}
Compare \frac{34}{25} and \frac{6}{25}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}