Evaluate
\frac{21446}{4959}\approx 4.32466223
Factor
\frac{2 \cdot 10723}{3 ^ {2} \cdot 19 \cdot 29} = 4\frac{1610}{4959} = 4.324662230288364
Share
Copied to clipboard
\begin{array}{l}\phantom{9918)}\phantom{1}\\9918\overline{)42892}\\\end{array}
Use the 1^{st} digit 4 from dividend 42892
\begin{array}{l}\phantom{9918)}0\phantom{2}\\9918\overline{)42892}\\\end{array}
Since 4 is less than 9918, use the next digit 2 from dividend 42892 and add 0 to the quotient
\begin{array}{l}\phantom{9918)}0\phantom{3}\\9918\overline{)42892}\\\end{array}
Use the 2^{nd} digit 2 from dividend 42892
\begin{array}{l}\phantom{9918)}00\phantom{4}\\9918\overline{)42892}\\\end{array}
Since 42 is less than 9918, use the next digit 8 from dividend 42892 and add 0 to the quotient
\begin{array}{l}\phantom{9918)}00\phantom{5}\\9918\overline{)42892}\\\end{array}
Use the 3^{rd} digit 8 from dividend 42892
\begin{array}{l}\phantom{9918)}000\phantom{6}\\9918\overline{)42892}\\\end{array}
Since 428 is less than 9918, use the next digit 9 from dividend 42892 and add 0 to the quotient
\begin{array}{l}\phantom{9918)}000\phantom{7}\\9918\overline{)42892}\\\end{array}
Use the 4^{th} digit 9 from dividend 42892
\begin{array}{l}\phantom{9918)}0000\phantom{8}\\9918\overline{)42892}\\\end{array}
Since 4289 is less than 9918, use the next digit 2 from dividend 42892 and add 0 to the quotient
\begin{array}{l}\phantom{9918)}0000\phantom{9}\\9918\overline{)42892}\\\end{array}
Use the 5^{th} digit 2 from dividend 42892
\begin{array}{l}\phantom{9918)}00004\phantom{10}\\9918\overline{)42892}\\\phantom{9918)}\underline{\phantom{}39672\phantom{}}\\\phantom{9918)9}3220\\\end{array}
Find closest multiple of 9918 to 42892. We see that 4 \times 9918 = 39672 is the nearest. Now subtract 39672 from 42892 to get reminder 3220. Add 4 to quotient.
\text{Quotient: }4 \text{Reminder: }3220
Since 3220 is less than 9918, stop the division. The reminder is 3220. The topmost line 00004 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 4.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}