Evaluate
\frac{212}{9}\approx 23.555555556
Factor
\frac{2 ^ {2} \cdot 53}{3 ^ {2}} = 23\frac{5}{9} = 23.555555555555557
Share
Copied to clipboard
\begin{array}{l}\phantom{18)}\phantom{1}\\18\overline{)424}\\\end{array}
Use the 1^{st} digit 4 from dividend 424
\begin{array}{l}\phantom{18)}0\phantom{2}\\18\overline{)424}\\\end{array}
Since 4 is less than 18, use the next digit 2 from dividend 424 and add 0 to the quotient
\begin{array}{l}\phantom{18)}0\phantom{3}\\18\overline{)424}\\\end{array}
Use the 2^{nd} digit 2 from dividend 424
\begin{array}{l}\phantom{18)}02\phantom{4}\\18\overline{)424}\\\phantom{18)}\underline{\phantom{}36\phantom{9}}\\\phantom{18)9}6\\\end{array}
Find closest multiple of 18 to 42. We see that 2 \times 18 = 36 is the nearest. Now subtract 36 from 42 to get reminder 6. Add 2 to quotient.
\begin{array}{l}\phantom{18)}02\phantom{5}\\18\overline{)424}\\\phantom{18)}\underline{\phantom{}36\phantom{9}}\\\phantom{18)9}64\\\end{array}
Use the 3^{rd} digit 4 from dividend 424
\begin{array}{l}\phantom{18)}023\phantom{6}\\18\overline{)424}\\\phantom{18)}\underline{\phantom{}36\phantom{9}}\\\phantom{18)9}64\\\phantom{18)}\underline{\phantom{9}54\phantom{}}\\\phantom{18)9}10\\\end{array}
Find closest multiple of 18 to 64. We see that 3 \times 18 = 54 is the nearest. Now subtract 54 from 64 to get reminder 10. Add 3 to quotient.
\text{Quotient: }23 \text{Reminder: }10
Since 10 is less than 18, stop the division. The reminder is 10. The topmost line 023 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 23.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}