Evaluate
\frac{529}{50}=10.58
Factor
\frac{23 ^ {2}}{2 \cdot 5 ^ {2}} = 10\frac{29}{50} = 10.58
Share
Copied to clipboard
\frac{41}{5}+\frac{\frac{21}{7}-\frac{4}{7}}{\frac{14}{49}+\frac{\frac{3}{7}}{\frac{7}{12}}}
Convert 3 to fraction \frac{21}{7}.
\frac{41}{5}+\frac{\frac{21-4}{7}}{\frac{14}{49}+\frac{\frac{3}{7}}{\frac{7}{12}}}
Since \frac{21}{7} and \frac{4}{7} have the same denominator, subtract them by subtracting their numerators.
\frac{41}{5}+\frac{\frac{17}{7}}{\frac{14}{49}+\frac{\frac{3}{7}}{\frac{7}{12}}}
Subtract 4 from 21 to get 17.
\frac{41}{5}+\frac{\frac{17}{7}}{\frac{2}{7}+\frac{\frac{3}{7}}{\frac{7}{12}}}
Reduce the fraction \frac{14}{49} to lowest terms by extracting and canceling out 7.
\frac{41}{5}+\frac{\frac{17}{7}}{\frac{2}{7}+\frac{3}{7}\times \frac{12}{7}}
Divide \frac{3}{7} by \frac{7}{12} by multiplying \frac{3}{7} by the reciprocal of \frac{7}{12}.
\frac{41}{5}+\frac{\frac{17}{7}}{\frac{2}{7}+\frac{3\times 12}{7\times 7}}
Multiply \frac{3}{7} times \frac{12}{7} by multiplying numerator times numerator and denominator times denominator.
\frac{41}{5}+\frac{\frac{17}{7}}{\frac{2}{7}+\frac{36}{49}}
Do the multiplications in the fraction \frac{3\times 12}{7\times 7}.
\frac{41}{5}+\frac{\frac{17}{7}}{\frac{14}{49}+\frac{36}{49}}
Least common multiple of 7 and 49 is 49. Convert \frac{2}{7} and \frac{36}{49} to fractions with denominator 49.
\frac{41}{5}+\frac{\frac{17}{7}}{\frac{14+36}{49}}
Since \frac{14}{49} and \frac{36}{49} have the same denominator, add them by adding their numerators.
\frac{41}{5}+\frac{\frac{17}{7}}{\frac{50}{49}}
Add 14 and 36 to get 50.
\frac{41}{5}+\frac{17}{7}\times \frac{49}{50}
Divide \frac{17}{7} by \frac{50}{49} by multiplying \frac{17}{7} by the reciprocal of \frac{50}{49}.
\frac{41}{5}+\frac{17\times 49}{7\times 50}
Multiply \frac{17}{7} times \frac{49}{50} by multiplying numerator times numerator and denominator times denominator.
\frac{41}{5}+\frac{833}{350}
Do the multiplications in the fraction \frac{17\times 49}{7\times 50}.
\frac{41}{5}+\frac{119}{50}
Reduce the fraction \frac{833}{350} to lowest terms by extracting and canceling out 7.
\frac{410}{50}+\frac{119}{50}
Least common multiple of 5 and 50 is 50. Convert \frac{41}{5} and \frac{119}{50} to fractions with denominator 50.
\frac{410+119}{50}
Since \frac{410}{50} and \frac{119}{50} have the same denominator, add them by adding their numerators.
\frac{529}{50}
Add 410 and 119 to get 529.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}