Solve for y
y=-\frac{14}{33}\approx -0.424242424
Graph
Share
Copied to clipboard
\frac{41}{13}y+\frac{3}{26}-\frac{8}{13}y=-\frac{25}{26}
Subtract \frac{8}{13}y from both sides.
\frac{33}{13}y+\frac{3}{26}=-\frac{25}{26}
Combine \frac{41}{13}y and -\frac{8}{13}y to get \frac{33}{13}y.
\frac{33}{13}y=-\frac{25}{26}-\frac{3}{26}
Subtract \frac{3}{26} from both sides.
\frac{33}{13}y=\frac{-25-3}{26}
Since -\frac{25}{26} and \frac{3}{26} have the same denominator, subtract them by subtracting their numerators.
\frac{33}{13}y=\frac{-28}{26}
Subtract 3 from -25 to get -28.
\frac{33}{13}y=-\frac{14}{13}
Reduce the fraction \frac{-28}{26} to lowest terms by extracting and canceling out 2.
y=-\frac{14}{13}\times \frac{13}{33}
Multiply both sides by \frac{13}{33}, the reciprocal of \frac{33}{13}.
y=\frac{-14\times 13}{13\times 33}
Multiply -\frac{14}{13} times \frac{13}{33} by multiplying numerator times numerator and denominator times denominator.
y=\frac{-14}{33}
Cancel out 13 in both numerator and denominator.
y=-\frac{14}{33}
Fraction \frac{-14}{33} can be rewritten as -\frac{14}{33} by extracting the negative sign.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}