Evaluate
\frac{204}{13}\approx 15.692307692
Factor
\frac{2 ^ {2} \cdot 3 \cdot 17}{13} = 15\frac{9}{13} = 15.692307692307692
Share
Copied to clipboard
\begin{array}{l}\phantom{26)}\phantom{1}\\26\overline{)408}\\\end{array}
Use the 1^{st} digit 4 from dividend 408
\begin{array}{l}\phantom{26)}0\phantom{2}\\26\overline{)408}\\\end{array}
Since 4 is less than 26, use the next digit 0 from dividend 408 and add 0 to the quotient
\begin{array}{l}\phantom{26)}0\phantom{3}\\26\overline{)408}\\\end{array}
Use the 2^{nd} digit 0 from dividend 408
\begin{array}{l}\phantom{26)}01\phantom{4}\\26\overline{)408}\\\phantom{26)}\underline{\phantom{}26\phantom{9}}\\\phantom{26)}14\\\end{array}
Find closest multiple of 26 to 40. We see that 1 \times 26 = 26 is the nearest. Now subtract 26 from 40 to get reminder 14. Add 1 to quotient.
\begin{array}{l}\phantom{26)}01\phantom{5}\\26\overline{)408}\\\phantom{26)}\underline{\phantom{}26\phantom{9}}\\\phantom{26)}148\\\end{array}
Use the 3^{rd} digit 8 from dividend 408
\begin{array}{l}\phantom{26)}015\phantom{6}\\26\overline{)408}\\\phantom{26)}\underline{\phantom{}26\phantom{9}}\\\phantom{26)}148\\\phantom{26)}\underline{\phantom{}130\phantom{}}\\\phantom{26)9}18\\\end{array}
Find closest multiple of 26 to 148. We see that 5 \times 26 = 130 is the nearest. Now subtract 130 from 148 to get reminder 18. Add 5 to quotient.
\text{Quotient: }15 \text{Reminder: }18
Since 18 is less than 26, stop the division. The reminder is 18. The topmost line 015 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 15.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}