Evaluate
\frac{32}{5}=6.4
Factor
\frac{2 ^ {5}}{5} = 6\frac{2}{5} = 6.4
Share
Copied to clipboard
\begin{array}{l}\phantom{625)}\phantom{1}\\625\overline{)4000}\\\end{array}
Use the 1^{st} digit 4 from dividend 4000
\begin{array}{l}\phantom{625)}0\phantom{2}\\625\overline{)4000}\\\end{array}
Since 4 is less than 625, use the next digit 0 from dividend 4000 and add 0 to the quotient
\begin{array}{l}\phantom{625)}0\phantom{3}\\625\overline{)4000}\\\end{array}
Use the 2^{nd} digit 0 from dividend 4000
\begin{array}{l}\phantom{625)}00\phantom{4}\\625\overline{)4000}\\\end{array}
Since 40 is less than 625, use the next digit 0 from dividend 4000 and add 0 to the quotient
\begin{array}{l}\phantom{625)}00\phantom{5}\\625\overline{)4000}\\\end{array}
Use the 3^{rd} digit 0 from dividend 4000
\begin{array}{l}\phantom{625)}000\phantom{6}\\625\overline{)4000}\\\end{array}
Since 400 is less than 625, use the next digit 0 from dividend 4000 and add 0 to the quotient
\begin{array}{l}\phantom{625)}000\phantom{7}\\625\overline{)4000}\\\end{array}
Use the 4^{th} digit 0 from dividend 4000
\begin{array}{l}\phantom{625)}0006\phantom{8}\\625\overline{)4000}\\\phantom{625)}\underline{\phantom{}3750\phantom{}}\\\phantom{625)9}250\\\end{array}
Find closest multiple of 625 to 4000. We see that 6 \times 625 = 3750 is the nearest. Now subtract 3750 from 4000 to get reminder 250. Add 6 to quotient.
\text{Quotient: }6 \text{Reminder: }250
Since 250 is less than 625, stop the division. The reminder is 250. The topmost line 0006 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 6.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}