Solve for c
\left\{\begin{matrix}c=\frac{2sx}{5gm}\text{, }&x\neq 0\text{ and }s\neq 0\text{ and }m\neq 0\text{ and }g\neq 0\\c\neq 0\text{, }&g=0\text{ and }s=0\text{ and }x\neq 0\text{ and }m\neq 0\end{matrix}\right.
Solve for g
g=\frac{2sx}{5cm}
m\neq 0\text{ and }c\neq 0\text{ and }x\neq 0
Graph
Share
Copied to clipboard
x\times 40ms=cm\times 100mg
Variable c cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by cmx, the least common multiple of mc,x.
x\times 40ms=cm^{2}\times 100g
Multiply m and m to get m^{2}.
cm^{2}\times 100g=x\times 40ms
Swap sides so that all variable terms are on the left hand side.
100gm^{2}c=40msx
The equation is in standard form.
\frac{100gm^{2}c}{100gm^{2}}=\frac{40msx}{100gm^{2}}
Divide both sides by 100m^{2}g.
c=\frac{40msx}{100gm^{2}}
Dividing by 100m^{2}g undoes the multiplication by 100m^{2}g.
c=\frac{2sx}{5gm}
Divide 40xms by 100m^{2}g.
c=\frac{2sx}{5gm}\text{, }c\neq 0
Variable c cannot be equal to 0.
x\times 40ms=cm\times 100mg
Multiply both sides of the equation by cmx, the least common multiple of mc,x.
x\times 40ms=cm^{2}\times 100g
Multiply m and m to get m^{2}.
cm^{2}\times 100g=x\times 40ms
Swap sides so that all variable terms are on the left hand side.
100cm^{2}g=40msx
The equation is in standard form.
\frac{100cm^{2}g}{100cm^{2}}=\frac{40msx}{100cm^{2}}
Divide both sides by 100cm^{2}.
g=\frac{40msx}{100cm^{2}}
Dividing by 100cm^{2} undoes the multiplication by 100cm^{2}.
g=\frac{2sx}{5cm}
Divide 40xms by 100cm^{2}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}