Evaluate
\frac{60\left(x^{2}-40x+1200\right)}{x^{2}\left(x^{2}-120x+5200\right)}
Expand
\frac{60\left(x^{2}-40x+1200\right)}{x^{2}\left(x^{2}-120x+5200\right)}
Graph
Share
Copied to clipboard
\frac{40\times \frac{1^{2}}{\left(60-x\right)^{2}}+\frac{20}{x^{2}}}{1+\left(\frac{40}{60-x}\right)^{2}}
To raise \frac{1}{60-x} to a power, raise both numerator and denominator to the power and then divide.
\frac{\frac{40\times 1^{2}}{\left(60-x\right)^{2}}+\frac{20}{x^{2}}}{1+\left(\frac{40}{60-x}\right)^{2}}
Express 40\times \frac{1^{2}}{\left(60-x\right)^{2}} as a single fraction.
\frac{\frac{40\times 1^{2}x^{2}}{x^{2}\left(-x+60\right)^{2}}+\frac{20\left(-x+60\right)^{2}}{x^{2}\left(-x+60\right)^{2}}}{1+\left(\frac{40}{60-x}\right)^{2}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of \left(60-x\right)^{2} and x^{2} is x^{2}\left(-x+60\right)^{2}. Multiply \frac{40\times 1^{2}}{\left(60-x\right)^{2}} times \frac{x^{2}}{x^{2}}. Multiply \frac{20}{x^{2}} times \frac{\left(-x+60\right)^{2}}{\left(-x+60\right)^{2}}.
\frac{\frac{40\times 1^{2}x^{2}+20\left(-x+60\right)^{2}}{x^{2}\left(-x+60\right)^{2}}}{1+\left(\frac{40}{60-x}\right)^{2}}
Since \frac{40\times 1^{2}x^{2}}{x^{2}\left(-x+60\right)^{2}} and \frac{20\left(-x+60\right)^{2}}{x^{2}\left(-x+60\right)^{2}} have the same denominator, add them by adding their numerators.
\frac{\frac{40x^{2}+20x^{2}-2400x+72000}{x^{2}\left(-x+60\right)^{2}}}{1+\left(\frac{40}{60-x}\right)^{2}}
Do the multiplications in 40\times 1^{2}x^{2}+20\left(-x+60\right)^{2}.
\frac{\frac{60x^{2}-2400x+72000}{x^{2}\left(-x+60\right)^{2}}}{1+\left(\frac{40}{60-x}\right)^{2}}
Combine like terms in 40x^{2}+20x^{2}-2400x+72000.
\frac{\frac{60x^{2}-2400x+72000}{x^{2}\left(-x+60\right)^{2}}}{1+\frac{40^{2}}{\left(60-x\right)^{2}}}
To raise \frac{40}{60-x} to a power, raise both numerator and denominator to the power and then divide.
\frac{\frac{60x^{2}-2400x+72000}{x^{2}\left(-x+60\right)^{2}}}{\frac{\left(60-x\right)^{2}}{\left(60-x\right)^{2}}+\frac{40^{2}}{\left(60-x\right)^{2}}}
To add or subtract expressions, expand them to make their denominators the same. Multiply 1 times \frac{\left(60-x\right)^{2}}{\left(60-x\right)^{2}}.
\frac{\frac{60x^{2}-2400x+72000}{x^{2}\left(-x+60\right)^{2}}}{\frac{\left(60-x\right)^{2}+40^{2}}{\left(60-x\right)^{2}}}
Since \frac{\left(60-x\right)^{2}}{\left(60-x\right)^{2}} and \frac{40^{2}}{\left(60-x\right)^{2}} have the same denominator, add them by adding their numerators.
\frac{\frac{60x^{2}-2400x+72000}{x^{2}\left(-x+60\right)^{2}}}{\frac{3600-120x+x^{2}+40^{2}}{\left(60-x\right)^{2}}}
Do the multiplications in \left(60-x\right)^{2}+40^{2}.
\frac{\frac{60x^{2}-2400x+72000}{x^{2}\left(-x+60\right)^{2}}}{\frac{5200-120x+x^{2}}{\left(60-x\right)^{2}}}
Combine like terms in 3600-120x+x^{2}+40^{2}.
\frac{\left(60x^{2}-2400x+72000\right)\left(60-x\right)^{2}}{x^{2}\left(-x+60\right)^{2}\left(5200-120x+x^{2}\right)}
Divide \frac{60x^{2}-2400x+72000}{x^{2}\left(-x+60\right)^{2}} by \frac{5200-120x+x^{2}}{\left(60-x\right)^{2}} by multiplying \frac{60x^{2}-2400x+72000}{x^{2}\left(-x+60\right)^{2}} by the reciprocal of \frac{5200-120x+x^{2}}{\left(60-x\right)^{2}}.
\frac{60x^{2}-2400x+72000}{x^{2}\left(x^{2}-120x+5200\right)}
Cancel out \left(-x+60\right)^{2} in both numerator and denominator.
\frac{60x^{2}-2400x+72000}{x^{4}-120x^{3}+5200x^{2}}
Use the distributive property to multiply x^{2} by x^{2}-120x+5200.
\frac{40\times \frac{1^{2}}{\left(60-x\right)^{2}}+\frac{20}{x^{2}}}{1+\left(\frac{40}{60-x}\right)^{2}}
To raise \frac{1}{60-x} to a power, raise both numerator and denominator to the power and then divide.
\frac{\frac{40\times 1^{2}}{\left(60-x\right)^{2}}+\frac{20}{x^{2}}}{1+\left(\frac{40}{60-x}\right)^{2}}
Express 40\times \frac{1^{2}}{\left(60-x\right)^{2}} as a single fraction.
\frac{\frac{40\times 1^{2}x^{2}}{x^{2}\left(-x+60\right)^{2}}+\frac{20\left(-x+60\right)^{2}}{x^{2}\left(-x+60\right)^{2}}}{1+\left(\frac{40}{60-x}\right)^{2}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of \left(60-x\right)^{2} and x^{2} is x^{2}\left(-x+60\right)^{2}. Multiply \frac{40\times 1^{2}}{\left(60-x\right)^{2}} times \frac{x^{2}}{x^{2}}. Multiply \frac{20}{x^{2}} times \frac{\left(-x+60\right)^{2}}{\left(-x+60\right)^{2}}.
\frac{\frac{40\times 1^{2}x^{2}+20\left(-x+60\right)^{2}}{x^{2}\left(-x+60\right)^{2}}}{1+\left(\frac{40}{60-x}\right)^{2}}
Since \frac{40\times 1^{2}x^{2}}{x^{2}\left(-x+60\right)^{2}} and \frac{20\left(-x+60\right)^{2}}{x^{2}\left(-x+60\right)^{2}} have the same denominator, add them by adding their numerators.
\frac{\frac{40x^{2}+20x^{2}-2400x+72000}{x^{2}\left(-x+60\right)^{2}}}{1+\left(\frac{40}{60-x}\right)^{2}}
Do the multiplications in 40\times 1^{2}x^{2}+20\left(-x+60\right)^{2}.
\frac{\frac{60x^{2}-2400x+72000}{x^{2}\left(-x+60\right)^{2}}}{1+\left(\frac{40}{60-x}\right)^{2}}
Combine like terms in 40x^{2}+20x^{2}-2400x+72000.
\frac{\frac{60x^{2}-2400x+72000}{x^{2}\left(-x+60\right)^{2}}}{1+\frac{40^{2}}{\left(60-x\right)^{2}}}
To raise \frac{40}{60-x} to a power, raise both numerator and denominator to the power and then divide.
\frac{\frac{60x^{2}-2400x+72000}{x^{2}\left(-x+60\right)^{2}}}{\frac{\left(60-x\right)^{2}}{\left(60-x\right)^{2}}+\frac{40^{2}}{\left(60-x\right)^{2}}}
To add or subtract expressions, expand them to make their denominators the same. Multiply 1 times \frac{\left(60-x\right)^{2}}{\left(60-x\right)^{2}}.
\frac{\frac{60x^{2}-2400x+72000}{x^{2}\left(-x+60\right)^{2}}}{\frac{\left(60-x\right)^{2}+40^{2}}{\left(60-x\right)^{2}}}
Since \frac{\left(60-x\right)^{2}}{\left(60-x\right)^{2}} and \frac{40^{2}}{\left(60-x\right)^{2}} have the same denominator, add them by adding their numerators.
\frac{\frac{60x^{2}-2400x+72000}{x^{2}\left(-x+60\right)^{2}}}{\frac{3600-120x+x^{2}+40^{2}}{\left(60-x\right)^{2}}}
Do the multiplications in \left(60-x\right)^{2}+40^{2}.
\frac{\frac{60x^{2}-2400x+72000}{x^{2}\left(-x+60\right)^{2}}}{\frac{5200-120x+x^{2}}{\left(60-x\right)^{2}}}
Combine like terms in 3600-120x+x^{2}+40^{2}.
\frac{\left(60x^{2}-2400x+72000\right)\left(60-x\right)^{2}}{x^{2}\left(-x+60\right)^{2}\left(5200-120x+x^{2}\right)}
Divide \frac{60x^{2}-2400x+72000}{x^{2}\left(-x+60\right)^{2}} by \frac{5200-120x+x^{2}}{\left(60-x\right)^{2}} by multiplying \frac{60x^{2}-2400x+72000}{x^{2}\left(-x+60\right)^{2}} by the reciprocal of \frac{5200-120x+x^{2}}{\left(60-x\right)^{2}}.
\frac{60x^{2}-2400x+72000}{x^{2}\left(x^{2}-120x+5200\right)}
Cancel out \left(-x+60\right)^{2} in both numerator and denominator.
\frac{60x^{2}-2400x+72000}{x^{4}-120x^{3}+5200x^{2}}
Use the distributive property to multiply x^{2} by x^{2}-120x+5200.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}