Solve for x
x=-\frac{182y}{45}+\frac{52577}{112500}
Solve for y
y=-\frac{45x}{182}+\frac{7511}{65000}
Graph
Share
Copied to clipboard
\frac{5}{7}x+\left(2.3y-y-x\right)\times \frac{40}{74}=2.03\times \frac{40}{1000}
Reduce the fraction \frac{40}{56} to lowest terms by extracting and canceling out 8.
\frac{5}{7}x+\left(1.3y-x\right)\times \frac{40}{74}=2.03\times \frac{40}{1000}
Combine 2.3y and -y to get 1.3y.
\frac{5}{7}x+\left(1.3y-x\right)\times \frac{20}{37}=2.03\times \frac{40}{1000}
Reduce the fraction \frac{40}{74} to lowest terms by extracting and canceling out 2.
\frac{5}{7}x+\frac{26}{37}y-\frac{20}{37}x=2.03\times \frac{40}{1000}
Use the distributive property to multiply 1.3y-x by \frac{20}{37}.
\frac{45}{259}x+\frac{26}{37}y=2.03\times \frac{40}{1000}
Combine \frac{5}{7}x and -\frac{20}{37}x to get \frac{45}{259}x.
\frac{45}{259}x+\frac{26}{37}y=2.03\times \frac{1}{25}
Reduce the fraction \frac{40}{1000} to lowest terms by extracting and canceling out 40.
\frac{45}{259}x+\frac{26}{37}y=\frac{203}{2500}
Multiply 2.03 and \frac{1}{25} to get \frac{203}{2500}.
\frac{45}{259}x=\frac{203}{2500}-\frac{26}{37}y
Subtract \frac{26}{37}y from both sides.
\frac{45}{259}x=-\frac{26y}{37}+\frac{203}{2500}
The equation is in standard form.
\frac{\frac{45}{259}x}{\frac{45}{259}}=\frac{-\frac{26y}{37}+\frac{203}{2500}}{\frac{45}{259}}
Divide both sides of the equation by \frac{45}{259}, which is the same as multiplying both sides by the reciprocal of the fraction.
x=\frac{-\frac{26y}{37}+\frac{203}{2500}}{\frac{45}{259}}
Dividing by \frac{45}{259} undoes the multiplication by \frac{45}{259}.
x=-\frac{182y}{45}+\frac{52577}{112500}
Divide \frac{203}{2500}-\frac{26y}{37} by \frac{45}{259} by multiplying \frac{203}{2500}-\frac{26y}{37} by the reciprocal of \frac{45}{259}.
\frac{5}{7}x+\left(2.3y-y-x\right)\times \frac{40}{74}=2.03\times \frac{40}{1000}
Reduce the fraction \frac{40}{56} to lowest terms by extracting and canceling out 8.
\frac{5}{7}x+\left(1.3y-x\right)\times \frac{40}{74}=2.03\times \frac{40}{1000}
Combine 2.3y and -y to get 1.3y.
\frac{5}{7}x+\left(1.3y-x\right)\times \frac{20}{37}=2.03\times \frac{40}{1000}
Reduce the fraction \frac{40}{74} to lowest terms by extracting and canceling out 2.
\frac{5}{7}x+\frac{26}{37}y-\frac{20}{37}x=2.03\times \frac{40}{1000}
Use the distributive property to multiply 1.3y-x by \frac{20}{37}.
\frac{45}{259}x+\frac{26}{37}y=2.03\times \frac{40}{1000}
Combine \frac{5}{7}x and -\frac{20}{37}x to get \frac{45}{259}x.
\frac{45}{259}x+\frac{26}{37}y=2.03\times \frac{1}{25}
Reduce the fraction \frac{40}{1000} to lowest terms by extracting and canceling out 40.
\frac{45}{259}x+\frac{26}{37}y=\frac{203}{2500}
Multiply 2.03 and \frac{1}{25} to get \frac{203}{2500}.
\frac{26}{37}y=\frac{203}{2500}-\frac{45}{259}x
Subtract \frac{45}{259}x from both sides.
\frac{26}{37}y=-\frac{45x}{259}+\frac{203}{2500}
The equation is in standard form.
\frac{\frac{26}{37}y}{\frac{26}{37}}=\frac{-\frac{45x}{259}+\frac{203}{2500}}{\frac{26}{37}}
Divide both sides of the equation by \frac{26}{37}, which is the same as multiplying both sides by the reciprocal of the fraction.
y=\frac{-\frac{45x}{259}+\frac{203}{2500}}{\frac{26}{37}}
Dividing by \frac{26}{37} undoes the multiplication by \frac{26}{37}.
y=-\frac{45x}{182}+\frac{7511}{65000}
Divide \frac{203}{2500}-\frac{45x}{259} by \frac{26}{37} by multiplying \frac{203}{2500}-\frac{45x}{259} by the reciprocal of \frac{26}{37}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}