Solve for x
x=1.36
Graph
Share
Copied to clipboard
\frac{5}{7}x+\left(2.3-1-x\right)\times \frac{40}{14}=2\times \frac{40}{100}
Reduce the fraction \frac{40}{56} to lowest terms by extracting and canceling out 8.
\frac{5}{7}x+\left(1.3-x\right)\times \frac{40}{14}=2\times \frac{40}{100}
Subtract 1 from 2.3 to get 1.3.
\frac{5}{7}x+\left(1.3-x\right)\times \frac{20}{7}=2\times \frac{40}{100}
Reduce the fraction \frac{40}{14} to lowest terms by extracting and canceling out 2.
\frac{5}{7}x+1.3\times \frac{20}{7}-x\times \frac{20}{7}=2\times \frac{40}{100}
Use the distributive property to multiply 1.3-x by \frac{20}{7}.
\frac{5}{7}x+\frac{13}{10}\times \frac{20}{7}-x\times \frac{20}{7}=2\times \frac{40}{100}
Convert decimal number 1.3 to fraction \frac{13}{10}.
\frac{5}{7}x+\frac{13\times 20}{10\times 7}-x\times \frac{20}{7}=2\times \frac{40}{100}
Multiply \frac{13}{10} times \frac{20}{7} by multiplying numerator times numerator and denominator times denominator.
\frac{5}{7}x+\frac{260}{70}-x\times \frac{20}{7}=2\times \frac{40}{100}
Do the multiplications in the fraction \frac{13\times 20}{10\times 7}.
\frac{5}{7}x+\frac{26}{7}-x\times \frac{20}{7}=2\times \frac{40}{100}
Reduce the fraction \frac{260}{70} to lowest terms by extracting and canceling out 10.
\frac{5}{7}x+\frac{26}{7}-\frac{20}{7}x=2\times \frac{40}{100}
Multiply -1 and \frac{20}{7} to get -\frac{20}{7}.
-\frac{15}{7}x+\frac{26}{7}=2\times \frac{40}{100}
Combine \frac{5}{7}x and -\frac{20}{7}x to get -\frac{15}{7}x.
-\frac{15}{7}x+\frac{26}{7}=2\times \frac{2}{5}
Reduce the fraction \frac{40}{100} to lowest terms by extracting and canceling out 20.
-\frac{15}{7}x+\frac{26}{7}=\frac{2\times 2}{5}
Express 2\times \frac{2}{5} as a single fraction.
-\frac{15}{7}x+\frac{26}{7}=\frac{4}{5}
Multiply 2 and 2 to get 4.
-\frac{15}{7}x=\frac{4}{5}-\frac{26}{7}
Subtract \frac{26}{7} from both sides.
-\frac{15}{7}x=\frac{28}{35}-\frac{130}{35}
Least common multiple of 5 and 7 is 35. Convert \frac{4}{5} and \frac{26}{7} to fractions with denominator 35.
-\frac{15}{7}x=\frac{28-130}{35}
Since \frac{28}{35} and \frac{130}{35} have the same denominator, subtract them by subtracting their numerators.
-\frac{15}{7}x=-\frac{102}{35}
Subtract 130 from 28 to get -102.
x=-\frac{102}{35}\left(-\frac{7}{15}\right)
Multiply both sides by -\frac{7}{15}, the reciprocal of -\frac{15}{7}.
x=\frac{-102\left(-7\right)}{35\times 15}
Multiply -\frac{102}{35} times -\frac{7}{15} by multiplying numerator times numerator and denominator times denominator.
x=\frac{714}{525}
Do the multiplications in the fraction \frac{-102\left(-7\right)}{35\times 15}.
x=\frac{34}{25}
Reduce the fraction \frac{714}{525} to lowest terms by extracting and canceling out 21.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}