Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\frac{40\left(1+\sqrt{3}\right)}{\left(1-\sqrt{3}\right)\left(1+\sqrt{3}\right)}
Rationalize the denominator of \frac{40}{1-\sqrt{3}} by multiplying numerator and denominator by 1+\sqrt{3}.
\frac{40\left(1+\sqrt{3}\right)}{1^{2}-\left(\sqrt{3}\right)^{2}}
Consider \left(1-\sqrt{3}\right)\left(1+\sqrt{3}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{40\left(1+\sqrt{3}\right)}{1-3}
Square 1. Square \sqrt{3}.
\frac{40\left(1+\sqrt{3}\right)}{-2}
Subtract 3 from 1 to get -2.
-20\left(1+\sqrt{3}\right)
Divide 40\left(1+\sqrt{3}\right) by -2 to get -20\left(1+\sqrt{3}\right).
-20-20\sqrt{3}
Use the distributive property to multiply -20 by 1+\sqrt{3}.