Evaluate
\frac{34461632205}{274877906944}\approx 0.125370688
Factor
\frac{3 ^ {2} \cdot 5 \cdot 7 \cdot 11 \cdot 13 \cdot 23 \cdot 29 \cdot 31 \cdot 37}{2 ^ {38}} = 0.12537068761957926
Share
Copied to clipboard
\frac{40!}{\left(20!\right)^{2}\times 2^{40}}
Multiply 20! and 20! to get \left(20!\right)^{2}.
\frac{815915283247897734345611269596115894272000000000}{\left(20!\right)^{2}\times 2^{40}}
The factorial of 40 is 815915283247897734345611269596115894272000000000.
\frac{815915283247897734345611269596115894272000000000}{2432902008176640000^{2}\times 2^{40}}
The factorial of 20 is 2432902008176640000.
\frac{815915283247897734345611269596115894272000000000}{5919012181389927685417441689600000000\times 2^{40}}
Calculate 2432902008176640000 to the power of 2 and get 5919012181389927685417441689600000000.
\frac{815915283247897734345611269596115894272000000000}{5919012181389927685417441689600000000\times 1099511627776}
Calculate 2 to the power of 40 and get 1099511627776.
\frac{815915283247897734345611269596115894272000000000}{6508022718386011963564259370193659730329600000000}
Multiply 5919012181389927685417441689600000000 and 1099511627776 to get 6508022718386011963564259370193659730329600000000.
\frac{34461632205}{274877906944}
Reduce the fraction \frac{815915283247897734345611269596115894272000000000}{6508022718386011963564259370193659730329600000000} to lowest terms by extracting and canceling out 23676048725559710741669766758400000000.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}