Solve for w
w=\frac{3y}{7}-\frac{x}{7}+\frac{2}{7y}
y\neq 0
Solve for x
x=3y-7w+\frac{2}{y}
y\neq 0
Graph
Share
Copied to clipboard
\frac{4y}{2y}-6wy-wy+3yy=xy
Multiply both sides of the equation by y.
\frac{4y}{2y}-6wy-wy+3y^{2}=xy
Multiply y and y to get y^{2}.
2-6wy-wy+3y^{2}=xy
Cancel out 2y in both numerator and denominator.
2-7wy+3y^{2}=xy
Combine -6wy and -wy to get -7wy.
-7wy+3y^{2}=xy-2
Subtract 2 from both sides.
-7wy=xy-2-3y^{2}
Subtract 3y^{2} from both sides.
\left(-7y\right)w=xy-3y^{2}-2
The equation is in standard form.
\frac{\left(-7y\right)w}{-7y}=\frac{xy-3y^{2}-2}{-7y}
Divide both sides by -7y.
w=\frac{xy-3y^{2}-2}{-7y}
Dividing by -7y undoes the multiplication by -7y.
w=\frac{3y}{7}-\frac{x}{7}+\frac{2}{7y}
Divide xy-2-3y^{2} by -7y.
\frac{4y}{2y}-6wy-wy+3yy=xy
Multiply both sides of the equation by y.
\frac{4y}{2y}-6wy-wy+3y^{2}=xy
Multiply y and y to get y^{2}.
2-6wy-wy+3y^{2}=xy
Cancel out 2y in both numerator and denominator.
2-7wy+3y^{2}=xy
Combine -6wy and -wy to get -7wy.
xy=2-7wy+3y^{2}
Swap sides so that all variable terms are on the left hand side.
yx=3y^{2}-7wy+2
The equation is in standard form.
\frac{yx}{y}=\frac{3y^{2}-7wy+2}{y}
Divide both sides by y.
x=\frac{3y^{2}-7wy+2}{y}
Dividing by y undoes the multiplication by y.
x=3y-7w+\frac{2}{y}
Divide 3y^{2}+2-7yw by y.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}