Solve for x
x=\frac{10}{11}\approx 0.909090909
Graph
Share
Copied to clipboard
\left(2x+5\right)\left(4x-8\right)=\left(x-5\right)\times 8x
Variable x cannot be equal to any of the values -\frac{5}{2},5 since division by zero is not defined. Multiply both sides of the equation by \left(x-5\right)\left(2x+5\right), the least common multiple of x-5,2x+5.
8x^{2}+4x-40=\left(x-5\right)\times 8x
Use the distributive property to multiply 2x+5 by 4x-8 and combine like terms.
8x^{2}+4x-40=\left(8x-40\right)x
Use the distributive property to multiply x-5 by 8.
8x^{2}+4x-40=8x^{2}-40x
Use the distributive property to multiply 8x-40 by x.
8x^{2}+4x-40-8x^{2}=-40x
Subtract 8x^{2} from both sides.
4x-40=-40x
Combine 8x^{2} and -8x^{2} to get 0.
4x-40+40x=0
Add 40x to both sides.
44x-40=0
Combine 4x and 40x to get 44x.
44x=40
Add 40 to both sides. Anything plus zero gives itself.
x=\frac{40}{44}
Divide both sides by 44.
x=\frac{10}{11}
Reduce the fraction \frac{40}{44} to lowest terms by extracting and canceling out 4.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}