Solve for x
x=2
x=3
Graph
Quiz
Quadratic Equation
5 problems similar to:
\frac { 4 x - 8 } { x + 5 } - 3 = \frac { x - 8 } { 2 }
Share
Copied to clipboard
2\left(4x-8\right)+2\left(x+5\right)\left(-3\right)=\left(x+5\right)\left(x-8\right)
Variable x cannot be equal to -5 since division by zero is not defined. Multiply both sides of the equation by 2\left(x+5\right), the least common multiple of x+5,2.
8x-16+2\left(x+5\right)\left(-3\right)=\left(x+5\right)\left(x-8\right)
Use the distributive property to multiply 2 by 4x-8.
8x-16-6\left(x+5\right)=\left(x+5\right)\left(x-8\right)
Multiply 2 and -3 to get -6.
8x-16-6x-30=\left(x+5\right)\left(x-8\right)
Use the distributive property to multiply -6 by x+5.
2x-16-30=\left(x+5\right)\left(x-8\right)
Combine 8x and -6x to get 2x.
2x-46=\left(x+5\right)\left(x-8\right)
Subtract 30 from -16 to get -46.
2x-46=x^{2}-3x-40
Use the distributive property to multiply x+5 by x-8 and combine like terms.
2x-46-x^{2}=-3x-40
Subtract x^{2} from both sides.
2x-46-x^{2}+3x=-40
Add 3x to both sides.
5x-46-x^{2}=-40
Combine 2x and 3x to get 5x.
5x-46-x^{2}+40=0
Add 40 to both sides.
5x-6-x^{2}=0
Add -46 and 40 to get -6.
-x^{2}+5x-6=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-5±\sqrt{5^{2}-4\left(-1\right)\left(-6\right)}}{2\left(-1\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -1 for a, 5 for b, and -6 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-5±\sqrt{25-4\left(-1\right)\left(-6\right)}}{2\left(-1\right)}
Square 5.
x=\frac{-5±\sqrt{25+4\left(-6\right)}}{2\left(-1\right)}
Multiply -4 times -1.
x=\frac{-5±\sqrt{25-24}}{2\left(-1\right)}
Multiply 4 times -6.
x=\frac{-5±\sqrt{1}}{2\left(-1\right)}
Add 25 to -24.
x=\frac{-5±1}{2\left(-1\right)}
Take the square root of 1.
x=\frac{-5±1}{-2}
Multiply 2 times -1.
x=-\frac{4}{-2}
Now solve the equation x=\frac{-5±1}{-2} when ± is plus. Add -5 to 1.
x=2
Divide -4 by -2.
x=-\frac{6}{-2}
Now solve the equation x=\frac{-5±1}{-2} when ± is minus. Subtract 1 from -5.
x=3
Divide -6 by -2.
x=2 x=3
The equation is now solved.
2\left(4x-8\right)+2\left(x+5\right)\left(-3\right)=\left(x+5\right)\left(x-8\right)
Variable x cannot be equal to -5 since division by zero is not defined. Multiply both sides of the equation by 2\left(x+5\right), the least common multiple of x+5,2.
8x-16+2\left(x+5\right)\left(-3\right)=\left(x+5\right)\left(x-8\right)
Use the distributive property to multiply 2 by 4x-8.
8x-16-6\left(x+5\right)=\left(x+5\right)\left(x-8\right)
Multiply 2 and -3 to get -6.
8x-16-6x-30=\left(x+5\right)\left(x-8\right)
Use the distributive property to multiply -6 by x+5.
2x-16-30=\left(x+5\right)\left(x-8\right)
Combine 8x and -6x to get 2x.
2x-46=\left(x+5\right)\left(x-8\right)
Subtract 30 from -16 to get -46.
2x-46=x^{2}-3x-40
Use the distributive property to multiply x+5 by x-8 and combine like terms.
2x-46-x^{2}=-3x-40
Subtract x^{2} from both sides.
2x-46-x^{2}+3x=-40
Add 3x to both sides.
5x-46-x^{2}=-40
Combine 2x and 3x to get 5x.
5x-x^{2}=-40+46
Add 46 to both sides.
5x-x^{2}=6
Add -40 and 46 to get 6.
-x^{2}+5x=6
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{-x^{2}+5x}{-1}=\frac{6}{-1}
Divide both sides by -1.
x^{2}+\frac{5}{-1}x=\frac{6}{-1}
Dividing by -1 undoes the multiplication by -1.
x^{2}-5x=\frac{6}{-1}
Divide 5 by -1.
x^{2}-5x=-6
Divide 6 by -1.
x^{2}-5x+\left(-\frac{5}{2}\right)^{2}=-6+\left(-\frac{5}{2}\right)^{2}
Divide -5, the coefficient of the x term, by 2 to get -\frac{5}{2}. Then add the square of -\frac{5}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-5x+\frac{25}{4}=-6+\frac{25}{4}
Square -\frac{5}{2} by squaring both the numerator and the denominator of the fraction.
x^{2}-5x+\frac{25}{4}=\frac{1}{4}
Add -6 to \frac{25}{4}.
\left(x-\frac{5}{2}\right)^{2}=\frac{1}{4}
Factor x^{2}-5x+\frac{25}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{5}{2}\right)^{2}}=\sqrt{\frac{1}{4}}
Take the square root of both sides of the equation.
x-\frac{5}{2}=\frac{1}{2} x-\frac{5}{2}=-\frac{1}{2}
Simplify.
x=3 x=2
Add \frac{5}{2} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}