Evaluate
\frac{4}{x+4}
Expand
\frac{4}{x+4}
Graph
Share
Copied to clipboard
\frac{4x-5}{\left(x-3\right)\left(x+4\right)}+\frac{9}{\left(x+6\right)\left(-x+3\right)}+\frac{2}{x^{2}+10x+24}
Factor x^{2}+x-12. Factor 18-3x-x^{2}.
\frac{\left(4x-5\right)\left(x+6\right)}{\left(x-3\right)\left(x+4\right)\left(x+6\right)}+\frac{9\left(-1\right)\left(x+4\right)}{\left(x-3\right)\left(x+4\right)\left(x+6\right)}+\frac{2}{x^{2}+10x+24}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of \left(x-3\right)\left(x+4\right) and \left(x+6\right)\left(-x+3\right) is \left(x-3\right)\left(x+4\right)\left(x+6\right). Multiply \frac{4x-5}{\left(x-3\right)\left(x+4\right)} times \frac{x+6}{x+6}. Multiply \frac{9}{\left(x+6\right)\left(-x+3\right)} times \frac{-\left(x+4\right)}{-\left(x+4\right)}.
\frac{\left(4x-5\right)\left(x+6\right)+9\left(-1\right)\left(x+4\right)}{\left(x-3\right)\left(x+4\right)\left(x+6\right)}+\frac{2}{x^{2}+10x+24}
Since \frac{\left(4x-5\right)\left(x+6\right)}{\left(x-3\right)\left(x+4\right)\left(x+6\right)} and \frac{9\left(-1\right)\left(x+4\right)}{\left(x-3\right)\left(x+4\right)\left(x+6\right)} have the same denominator, add them by adding their numerators.
\frac{4x^{2}+24x-5x-30-9x-36}{\left(x-3\right)\left(x+4\right)\left(x+6\right)}+\frac{2}{x^{2}+10x+24}
Do the multiplications in \left(4x-5\right)\left(x+6\right)+9\left(-1\right)\left(x+4\right).
\frac{4x^{2}+10x-66}{\left(x-3\right)\left(x+4\right)\left(x+6\right)}+\frac{2}{x^{2}+10x+24}
Combine like terms in 4x^{2}+24x-5x-30-9x-36.
\frac{2\left(x-3\right)\left(2x+11\right)}{\left(x-3\right)\left(x+4\right)\left(x+6\right)}+\frac{2}{x^{2}+10x+24}
Factor the expressions that are not already factored in \frac{4x^{2}+10x-66}{\left(x-3\right)\left(x+4\right)\left(x+6\right)}.
\frac{2\left(2x+11\right)}{\left(x+4\right)\left(x+6\right)}+\frac{2}{x^{2}+10x+24}
Cancel out x-3 in both numerator and denominator.
\frac{2\left(2x+11\right)}{\left(x+4\right)\left(x+6\right)}+\frac{2}{\left(x+4\right)\left(x+6\right)}
Factor x^{2}+10x+24.
\frac{2\left(2x+11\right)+2}{\left(x+4\right)\left(x+6\right)}
Since \frac{2\left(2x+11\right)}{\left(x+4\right)\left(x+6\right)} and \frac{2}{\left(x+4\right)\left(x+6\right)} have the same denominator, add them by adding their numerators.
\frac{4x+22+2}{\left(x+4\right)\left(x+6\right)}
Do the multiplications in 2\left(2x+11\right)+2.
\frac{4x+24}{\left(x+4\right)\left(x+6\right)}
Combine like terms in 4x+22+2.
\frac{4\left(x+6\right)}{\left(x+4\right)\left(x+6\right)}
Factor the expressions that are not already factored in \frac{4x+24}{\left(x+4\right)\left(x+6\right)}.
\frac{4}{x+4}
Cancel out x+6 in both numerator and denominator.
\frac{4x-5}{\left(x-3\right)\left(x+4\right)}+\frac{9}{\left(x+6\right)\left(-x+3\right)}+\frac{2}{x^{2}+10x+24}
Factor x^{2}+x-12. Factor 18-3x-x^{2}.
\frac{\left(4x-5\right)\left(x+6\right)}{\left(x-3\right)\left(x+4\right)\left(x+6\right)}+\frac{9\left(-1\right)\left(x+4\right)}{\left(x-3\right)\left(x+4\right)\left(x+6\right)}+\frac{2}{x^{2}+10x+24}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of \left(x-3\right)\left(x+4\right) and \left(x+6\right)\left(-x+3\right) is \left(x-3\right)\left(x+4\right)\left(x+6\right). Multiply \frac{4x-5}{\left(x-3\right)\left(x+4\right)} times \frac{x+6}{x+6}. Multiply \frac{9}{\left(x+6\right)\left(-x+3\right)} times \frac{-\left(x+4\right)}{-\left(x+4\right)}.
\frac{\left(4x-5\right)\left(x+6\right)+9\left(-1\right)\left(x+4\right)}{\left(x-3\right)\left(x+4\right)\left(x+6\right)}+\frac{2}{x^{2}+10x+24}
Since \frac{\left(4x-5\right)\left(x+6\right)}{\left(x-3\right)\left(x+4\right)\left(x+6\right)} and \frac{9\left(-1\right)\left(x+4\right)}{\left(x-3\right)\left(x+4\right)\left(x+6\right)} have the same denominator, add them by adding their numerators.
\frac{4x^{2}+24x-5x-30-9x-36}{\left(x-3\right)\left(x+4\right)\left(x+6\right)}+\frac{2}{x^{2}+10x+24}
Do the multiplications in \left(4x-5\right)\left(x+6\right)+9\left(-1\right)\left(x+4\right).
\frac{4x^{2}+10x-66}{\left(x-3\right)\left(x+4\right)\left(x+6\right)}+\frac{2}{x^{2}+10x+24}
Combine like terms in 4x^{2}+24x-5x-30-9x-36.
\frac{2\left(x-3\right)\left(2x+11\right)}{\left(x-3\right)\left(x+4\right)\left(x+6\right)}+\frac{2}{x^{2}+10x+24}
Factor the expressions that are not already factored in \frac{4x^{2}+10x-66}{\left(x-3\right)\left(x+4\right)\left(x+6\right)}.
\frac{2\left(2x+11\right)}{\left(x+4\right)\left(x+6\right)}+\frac{2}{x^{2}+10x+24}
Cancel out x-3 in both numerator and denominator.
\frac{2\left(2x+11\right)}{\left(x+4\right)\left(x+6\right)}+\frac{2}{\left(x+4\right)\left(x+6\right)}
Factor x^{2}+10x+24.
\frac{2\left(2x+11\right)+2}{\left(x+4\right)\left(x+6\right)}
Since \frac{2\left(2x+11\right)}{\left(x+4\right)\left(x+6\right)} and \frac{2}{\left(x+4\right)\left(x+6\right)} have the same denominator, add them by adding their numerators.
\frac{4x+22+2}{\left(x+4\right)\left(x+6\right)}
Do the multiplications in 2\left(2x+11\right)+2.
\frac{4x+24}{\left(x+4\right)\left(x+6\right)}
Combine like terms in 4x+22+2.
\frac{4\left(x+6\right)}{\left(x+4\right)\left(x+6\right)}
Factor the expressions that are not already factored in \frac{4x+24}{\left(x+4\right)\left(x+6\right)}.
\frac{4}{x+4}
Cancel out x+6 in both numerator and denominator.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}