Solve for x
x\leq -\frac{16}{7}
Graph
Share
Copied to clipboard
3\left(4x-3\right)-5\left(5x+2\right)\geq 15x+45
Multiply both sides of the equation by 15, the least common multiple of 5,3. Since 15 is positive, the inequality direction remains the same.
12x-9-5\left(5x+2\right)\geq 15x+45
Use the distributive property to multiply 3 by 4x-3.
12x-9-25x-10\geq 15x+45
Use the distributive property to multiply -5 by 5x+2.
-13x-9-10\geq 15x+45
Combine 12x and -25x to get -13x.
-13x-19\geq 15x+45
Subtract 10 from -9 to get -19.
-13x-19-15x\geq 45
Subtract 15x from both sides.
-28x-19\geq 45
Combine -13x and -15x to get -28x.
-28x\geq 45+19
Add 19 to both sides.
-28x\geq 64
Add 45 and 19 to get 64.
x\leq \frac{64}{-28}
Divide both sides by -28. Since -28 is negative, the inequality direction is changed.
x\leq -\frac{16}{7}
Reduce the fraction \frac{64}{-28} to lowest terms by extracting and canceling out 4.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}