Evaluate
-2
Factor
-2
Graph
Share
Copied to clipboard
\frac{\left(4x-3\right)\left(2x+3\right)}{\left(-2x+3\right)\left(2x+3\right)}-\frac{\left(4+5x\right)\left(-2x+3\right)}{\left(-2x+3\right)\left(2x+3\right)}-\frac{3+x-10x^{2}}{4x^{2}-9}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 3-2x and 3+2x is \left(-2x+3\right)\left(2x+3\right). Multiply \frac{4x-3}{3-2x} times \frac{2x+3}{2x+3}. Multiply \frac{4+5x}{3+2x} times \frac{-2x+3}{-2x+3}.
\frac{\left(4x-3\right)\left(2x+3\right)-\left(4+5x\right)\left(-2x+3\right)}{\left(-2x+3\right)\left(2x+3\right)}-\frac{3+x-10x^{2}}{4x^{2}-9}
Since \frac{\left(4x-3\right)\left(2x+3\right)}{\left(-2x+3\right)\left(2x+3\right)} and \frac{\left(4+5x\right)\left(-2x+3\right)}{\left(-2x+3\right)\left(2x+3\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{8x^{2}+12x-6x-9+8x-12+10x^{2}-15x}{\left(-2x+3\right)\left(2x+3\right)}-\frac{3+x-10x^{2}}{4x^{2}-9}
Do the multiplications in \left(4x-3\right)\left(2x+3\right)-\left(4+5x\right)\left(-2x+3\right).
\frac{18x^{2}-x-21}{\left(-2x+3\right)\left(2x+3\right)}-\frac{3+x-10x^{2}}{4x^{2}-9}
Combine like terms in 8x^{2}+12x-6x-9+8x-12+10x^{2}-15x.
\frac{18x^{2}-x-21}{\left(-2x+3\right)\left(2x+3\right)}-\frac{3+x-10x^{2}}{\left(2x-3\right)\left(2x+3\right)}
Factor 4x^{2}-9.
\frac{-\left(18x^{2}-x-21\right)}{\left(2x-3\right)\left(2x+3\right)}-\frac{3+x-10x^{2}}{\left(2x-3\right)\left(2x+3\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of \left(-2x+3\right)\left(2x+3\right) and \left(2x-3\right)\left(2x+3\right) is \left(2x-3\right)\left(2x+3\right). Multiply \frac{18x^{2}-x-21}{\left(-2x+3\right)\left(2x+3\right)} times \frac{-1}{-1}.
\frac{-\left(18x^{2}-x-21\right)-\left(3+x-10x^{2}\right)}{\left(2x-3\right)\left(2x+3\right)}
Since \frac{-\left(18x^{2}-x-21\right)}{\left(2x-3\right)\left(2x+3\right)} and \frac{3+x-10x^{2}}{\left(2x-3\right)\left(2x+3\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{-18x^{2}+x+21-3-x+10x^{2}}{\left(2x-3\right)\left(2x+3\right)}
Do the multiplications in -\left(18x^{2}-x-21\right)-\left(3+x-10x^{2}\right).
\frac{-8x^{2}+18}{\left(2x-3\right)\left(2x+3\right)}
Combine like terms in -18x^{2}+x+21-3-x+10x^{2}.
\frac{2\left(-2x-3\right)\left(2x-3\right)}{\left(2x-3\right)\left(2x+3\right)}
Factor the expressions that are not already factored in \frac{-8x^{2}+18}{\left(2x-3\right)\left(2x+3\right)}.
\frac{-2\left(2x-3\right)\left(2x+3\right)}{\left(2x-3\right)\left(2x+3\right)}
Extract the negative sign in -3-2x.
-2
Cancel out \left(2x-3\right)\left(2x+3\right) in both numerator and denominator.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}