Skip to main content
Evaluate
Tick mark Image
Factor
Tick mark Image
Graph

Similar Problems from Web Search

Share

\frac{\left(4x-3\right)\left(2x+3\right)}{\left(-2x+3\right)\left(2x+3\right)}-\frac{\left(4+5x\right)\left(-2x+3\right)}{\left(-2x+3\right)\left(2x+3\right)}-\frac{3+x-10x^{2}}{4x^{2}-9}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 3-2x and 3+2x is \left(-2x+3\right)\left(2x+3\right). Multiply \frac{4x-3}{3-2x} times \frac{2x+3}{2x+3}. Multiply \frac{4+5x}{3+2x} times \frac{-2x+3}{-2x+3}.
\frac{\left(4x-3\right)\left(2x+3\right)-\left(4+5x\right)\left(-2x+3\right)}{\left(-2x+3\right)\left(2x+3\right)}-\frac{3+x-10x^{2}}{4x^{2}-9}
Since \frac{\left(4x-3\right)\left(2x+3\right)}{\left(-2x+3\right)\left(2x+3\right)} and \frac{\left(4+5x\right)\left(-2x+3\right)}{\left(-2x+3\right)\left(2x+3\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{8x^{2}+12x-6x-9+8x-12+10x^{2}-15x}{\left(-2x+3\right)\left(2x+3\right)}-\frac{3+x-10x^{2}}{4x^{2}-9}
Do the multiplications in \left(4x-3\right)\left(2x+3\right)-\left(4+5x\right)\left(-2x+3\right).
\frac{18x^{2}-x-21}{\left(-2x+3\right)\left(2x+3\right)}-\frac{3+x-10x^{2}}{4x^{2}-9}
Combine like terms in 8x^{2}+12x-6x-9+8x-12+10x^{2}-15x.
\frac{18x^{2}-x-21}{\left(-2x+3\right)\left(2x+3\right)}-\frac{3+x-10x^{2}}{\left(2x-3\right)\left(2x+3\right)}
Factor 4x^{2}-9.
\frac{-\left(18x^{2}-x-21\right)}{\left(2x-3\right)\left(2x+3\right)}-\frac{3+x-10x^{2}}{\left(2x-3\right)\left(2x+3\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of \left(-2x+3\right)\left(2x+3\right) and \left(2x-3\right)\left(2x+3\right) is \left(2x-3\right)\left(2x+3\right). Multiply \frac{18x^{2}-x-21}{\left(-2x+3\right)\left(2x+3\right)} times \frac{-1}{-1}.
\frac{-\left(18x^{2}-x-21\right)-\left(3+x-10x^{2}\right)}{\left(2x-3\right)\left(2x+3\right)}
Since \frac{-\left(18x^{2}-x-21\right)}{\left(2x-3\right)\left(2x+3\right)} and \frac{3+x-10x^{2}}{\left(2x-3\right)\left(2x+3\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{-18x^{2}+x+21-3-x+10x^{2}}{\left(2x-3\right)\left(2x+3\right)}
Do the multiplications in -\left(18x^{2}-x-21\right)-\left(3+x-10x^{2}\right).
\frac{-8x^{2}+18}{\left(2x-3\right)\left(2x+3\right)}
Combine like terms in -18x^{2}+x+21-3-x+10x^{2}.
\frac{2\left(-2x-3\right)\left(2x-3\right)}{\left(2x-3\right)\left(2x+3\right)}
Factor the expressions that are not already factored in \frac{-8x^{2}+18}{\left(2x-3\right)\left(2x+3\right)}.
\frac{-2\left(2x-3\right)\left(2x+3\right)}{\left(2x-3\right)\left(2x+3\right)}
Extract the negative sign in -3-2x.
-2
Cancel out \left(2x-3\right)\left(2x+3\right) in both numerator and denominator.