Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image
Graph

Similar Problems from Web Search

Share

\frac{4\left(x-3\right)}{\left(x-3\right)\left(x-2\right)}-\frac{16}{x^{2}-4}
Factor the expressions that are not already factored in \frac{4x-12}{x^{2}-5x+6}.
\frac{4}{x-2}-\frac{16}{x^{2}-4}
Cancel out x-3 in both numerator and denominator.
\frac{4}{x-2}-\frac{16}{\left(x-2\right)\left(x+2\right)}
Factor x^{2}-4.
\frac{4\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}-\frac{16}{\left(x-2\right)\left(x+2\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of x-2 and \left(x-2\right)\left(x+2\right) is \left(x-2\right)\left(x+2\right). Multiply \frac{4}{x-2} times \frac{x+2}{x+2}.
\frac{4\left(x+2\right)-16}{\left(x-2\right)\left(x+2\right)}
Since \frac{4\left(x+2\right)}{\left(x-2\right)\left(x+2\right)} and \frac{16}{\left(x-2\right)\left(x+2\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{4x+8-16}{\left(x-2\right)\left(x+2\right)}
Do the multiplications in 4\left(x+2\right)-16.
\frac{4x-8}{\left(x-2\right)\left(x+2\right)}
Combine like terms in 4x+8-16.
\frac{4\left(x-2\right)}{\left(x-2\right)\left(x+2\right)}
Factor the expressions that are not already factored in \frac{4x-8}{\left(x-2\right)\left(x+2\right)}.
\frac{4}{x+2}
Cancel out x-2 in both numerator and denominator.
\frac{4\left(x-3\right)}{\left(x-3\right)\left(x-2\right)}-\frac{16}{x^{2}-4}
Factor the expressions that are not already factored in \frac{4x-12}{x^{2}-5x+6}.
\frac{4}{x-2}-\frac{16}{x^{2}-4}
Cancel out x-3 in both numerator and denominator.
\frac{4}{x-2}-\frac{16}{\left(x-2\right)\left(x+2\right)}
Factor x^{2}-4.
\frac{4\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}-\frac{16}{\left(x-2\right)\left(x+2\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of x-2 and \left(x-2\right)\left(x+2\right) is \left(x-2\right)\left(x+2\right). Multiply \frac{4}{x-2} times \frac{x+2}{x+2}.
\frac{4\left(x+2\right)-16}{\left(x-2\right)\left(x+2\right)}
Since \frac{4\left(x+2\right)}{\left(x-2\right)\left(x+2\right)} and \frac{16}{\left(x-2\right)\left(x+2\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{4x+8-16}{\left(x-2\right)\left(x+2\right)}
Do the multiplications in 4\left(x+2\right)-16.
\frac{4x-8}{\left(x-2\right)\left(x+2\right)}
Combine like terms in 4x+8-16.
\frac{4\left(x-2\right)}{\left(x-2\right)\left(x+2\right)}
Factor the expressions that are not already factored in \frac{4x-8}{\left(x-2\right)\left(x+2\right)}.
\frac{4}{x+2}
Cancel out x-2 in both numerator and denominator.