Evaluate
\frac{4}{x+2}
Expand
\frac{4}{x+2}
Graph
Share
Copied to clipboard
\frac{\frac{4x}{x^{2}+2x-15}\left(x-3\right)}{\frac{x^{2}+2x}{x^{2}-25}\left(x-5\right)}
Divide \frac{\frac{4x}{x^{2}+2x-15}}{\frac{x^{2}+2x}{x^{2}-25}} by \frac{x-5}{x-3} by multiplying \frac{\frac{4x}{x^{2}+2x-15}}{\frac{x^{2}+2x}{x^{2}-25}} by the reciprocal of \frac{x-5}{x-3}.
\frac{\frac{4x\left(x-3\right)}{x^{2}+2x-15}}{\frac{x^{2}+2x}{x^{2}-25}\left(x-5\right)}
Express \frac{4x}{x^{2}+2x-15}\left(x-3\right) as a single fraction.
\frac{\frac{4x\left(x-3\right)}{x^{2}+2x-15}}{\frac{\left(x^{2}+2x\right)\left(x-5\right)}{x^{2}-25}}
Express \frac{x^{2}+2x}{x^{2}-25}\left(x-5\right) as a single fraction.
\frac{4x\left(x-3\right)\left(x^{2}-25\right)}{\left(x^{2}+2x-15\right)\left(x^{2}+2x\right)\left(x-5\right)}
Divide \frac{4x\left(x-3\right)}{x^{2}+2x-15} by \frac{\left(x^{2}+2x\right)\left(x-5\right)}{x^{2}-25} by multiplying \frac{4x\left(x-3\right)}{x^{2}+2x-15} by the reciprocal of \frac{\left(x^{2}+2x\right)\left(x-5\right)}{x^{2}-25}.
\frac{4x\left(x-5\right)\left(x-3\right)\left(x+5\right)}{x\left(x-5\right)\left(x-3\right)\left(x+2\right)\left(x+5\right)}
Factor the expressions that are not already factored.
\frac{4}{x+2}
Cancel out x\left(x-5\right)\left(x-3\right)\left(x+5\right) in both numerator and denominator.
\frac{\frac{4x}{x^{2}+2x-15}\left(x-3\right)}{\frac{x^{2}+2x}{x^{2}-25}\left(x-5\right)}
Divide \frac{\frac{4x}{x^{2}+2x-15}}{\frac{x^{2}+2x}{x^{2}-25}} by \frac{x-5}{x-3} by multiplying \frac{\frac{4x}{x^{2}+2x-15}}{\frac{x^{2}+2x}{x^{2}-25}} by the reciprocal of \frac{x-5}{x-3}.
\frac{\frac{4x\left(x-3\right)}{x^{2}+2x-15}}{\frac{x^{2}+2x}{x^{2}-25}\left(x-5\right)}
Express \frac{4x}{x^{2}+2x-15}\left(x-3\right) as a single fraction.
\frac{\frac{4x\left(x-3\right)}{x^{2}+2x-15}}{\frac{\left(x^{2}+2x\right)\left(x-5\right)}{x^{2}-25}}
Express \frac{x^{2}+2x}{x^{2}-25}\left(x-5\right) as a single fraction.
\frac{4x\left(x-3\right)\left(x^{2}-25\right)}{\left(x^{2}+2x-15\right)\left(x^{2}+2x\right)\left(x-5\right)}
Divide \frac{4x\left(x-3\right)}{x^{2}+2x-15} by \frac{\left(x^{2}+2x\right)\left(x-5\right)}{x^{2}-25} by multiplying \frac{4x\left(x-3\right)}{x^{2}+2x-15} by the reciprocal of \frac{\left(x^{2}+2x\right)\left(x-5\right)}{x^{2}-25}.
\frac{4x\left(x-5\right)\left(x-3\right)\left(x+5\right)}{x\left(x-5\right)\left(x-3\right)\left(x+2\right)\left(x+5\right)}
Factor the expressions that are not already factored.
\frac{4}{x+2}
Cancel out x\left(x-5\right)\left(x-3\right)\left(x+5\right) in both numerator and denominator.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}