Solve for x
x=-7
x=15
Graph
Quiz
Quadratic Equation
5 problems similar to:
\frac { 4 x } { x + 3 } - 4 = \frac { x - 23 } { x - 3 }
Share
Copied to clipboard
\left(x-3\right)\times 4x+\left(x-3\right)\left(x+3\right)\left(-4\right)=\left(x+3\right)\left(x-23\right)
Variable x cannot be equal to any of the values -3,3 since division by zero is not defined. Multiply both sides of the equation by \left(x-3\right)\left(x+3\right), the least common multiple of x+3,x-3.
\left(4x-12\right)x+\left(x-3\right)\left(x+3\right)\left(-4\right)=\left(x+3\right)\left(x-23\right)
Use the distributive property to multiply x-3 by 4.
4x^{2}-12x+\left(x-3\right)\left(x+3\right)\left(-4\right)=\left(x+3\right)\left(x-23\right)
Use the distributive property to multiply 4x-12 by x.
4x^{2}-12x+\left(x^{2}-9\right)\left(-4\right)=\left(x+3\right)\left(x-23\right)
Use the distributive property to multiply x-3 by x+3 and combine like terms.
4x^{2}-12x-4x^{2}+36=\left(x+3\right)\left(x-23\right)
Use the distributive property to multiply x^{2}-9 by -4.
-12x+36=\left(x+3\right)\left(x-23\right)
Combine 4x^{2} and -4x^{2} to get 0.
-12x+36=x^{2}-20x-69
Use the distributive property to multiply x+3 by x-23 and combine like terms.
-12x+36-x^{2}=-20x-69
Subtract x^{2} from both sides.
-12x+36-x^{2}+20x=-69
Add 20x to both sides.
8x+36-x^{2}=-69
Combine -12x and 20x to get 8x.
8x+36-x^{2}+69=0
Add 69 to both sides.
8x+105-x^{2}=0
Add 36 and 69 to get 105.
-x^{2}+8x+105=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-8±\sqrt{8^{2}-4\left(-1\right)\times 105}}{2\left(-1\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -1 for a, 8 for b, and 105 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-8±\sqrt{64-4\left(-1\right)\times 105}}{2\left(-1\right)}
Square 8.
x=\frac{-8±\sqrt{64+4\times 105}}{2\left(-1\right)}
Multiply -4 times -1.
x=\frac{-8±\sqrt{64+420}}{2\left(-1\right)}
Multiply 4 times 105.
x=\frac{-8±\sqrt{484}}{2\left(-1\right)}
Add 64 to 420.
x=\frac{-8±22}{2\left(-1\right)}
Take the square root of 484.
x=\frac{-8±22}{-2}
Multiply 2 times -1.
x=\frac{14}{-2}
Now solve the equation x=\frac{-8±22}{-2} when ± is plus. Add -8 to 22.
x=-7
Divide 14 by -2.
x=-\frac{30}{-2}
Now solve the equation x=\frac{-8±22}{-2} when ± is minus. Subtract 22 from -8.
x=15
Divide -30 by -2.
x=-7 x=15
The equation is now solved.
\left(x-3\right)\times 4x+\left(x-3\right)\left(x+3\right)\left(-4\right)=\left(x+3\right)\left(x-23\right)
Variable x cannot be equal to any of the values -3,3 since division by zero is not defined. Multiply both sides of the equation by \left(x-3\right)\left(x+3\right), the least common multiple of x+3,x-3.
\left(4x-12\right)x+\left(x-3\right)\left(x+3\right)\left(-4\right)=\left(x+3\right)\left(x-23\right)
Use the distributive property to multiply x-3 by 4.
4x^{2}-12x+\left(x-3\right)\left(x+3\right)\left(-4\right)=\left(x+3\right)\left(x-23\right)
Use the distributive property to multiply 4x-12 by x.
4x^{2}-12x+\left(x^{2}-9\right)\left(-4\right)=\left(x+3\right)\left(x-23\right)
Use the distributive property to multiply x-3 by x+3 and combine like terms.
4x^{2}-12x-4x^{2}+36=\left(x+3\right)\left(x-23\right)
Use the distributive property to multiply x^{2}-9 by -4.
-12x+36=\left(x+3\right)\left(x-23\right)
Combine 4x^{2} and -4x^{2} to get 0.
-12x+36=x^{2}-20x-69
Use the distributive property to multiply x+3 by x-23 and combine like terms.
-12x+36-x^{2}=-20x-69
Subtract x^{2} from both sides.
-12x+36-x^{2}+20x=-69
Add 20x to both sides.
8x+36-x^{2}=-69
Combine -12x and 20x to get 8x.
8x-x^{2}=-69-36
Subtract 36 from both sides.
8x-x^{2}=-105
Subtract 36 from -69 to get -105.
-x^{2}+8x=-105
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{-x^{2}+8x}{-1}=-\frac{105}{-1}
Divide both sides by -1.
x^{2}+\frac{8}{-1}x=-\frac{105}{-1}
Dividing by -1 undoes the multiplication by -1.
x^{2}-8x=-\frac{105}{-1}
Divide 8 by -1.
x^{2}-8x=105
Divide -105 by -1.
x^{2}-8x+\left(-4\right)^{2}=105+\left(-4\right)^{2}
Divide -8, the coefficient of the x term, by 2 to get -4. Then add the square of -4 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-8x+16=105+16
Square -4.
x^{2}-8x+16=121
Add 105 to 16.
\left(x-4\right)^{2}=121
Factor x^{2}-8x+16. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-4\right)^{2}}=\sqrt{121}
Take the square root of both sides of the equation.
x-4=11 x-4=-11
Simplify.
x=15 x=-7
Add 4 to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}