Solve for x
x = \frac{859}{80} = 10\frac{59}{80} = 10.7375
Graph
Share
Copied to clipboard
10\times 4x+15\times \frac{7}{10}-80=360
Multiply both sides of the equation by 60, the least common multiple of 6,12,10,3.
40x+15\times \frac{7}{10}-80=360
Multiply 10 and 4 to get 40.
40x+\frac{15\times 7}{10}-80=360
Express 15\times \frac{7}{10} as a single fraction.
40x+\frac{105}{10}-80=360
Multiply 15 and 7 to get 105.
40x+\frac{21}{2}-80=360
Reduce the fraction \frac{105}{10} to lowest terms by extracting and canceling out 5.
40x+\frac{21}{2}-\frac{160}{2}=360
Convert 80 to fraction \frac{160}{2}.
40x+\frac{21-160}{2}=360
Since \frac{21}{2} and \frac{160}{2} have the same denominator, subtract them by subtracting their numerators.
40x-\frac{139}{2}=360
Subtract 160 from 21 to get -139.
40x=360+\frac{139}{2}
Add \frac{139}{2} to both sides.
40x=\frac{720}{2}+\frac{139}{2}
Convert 360 to fraction \frac{720}{2}.
40x=\frac{720+139}{2}
Since \frac{720}{2} and \frac{139}{2} have the same denominator, add them by adding their numerators.
40x=\frac{859}{2}
Add 720 and 139 to get 859.
x=\frac{\frac{859}{2}}{40}
Divide both sides by 40.
x=\frac{859}{2\times 40}
Express \frac{\frac{859}{2}}{40} as a single fraction.
x=\frac{859}{80}
Multiply 2 and 40 to get 80.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}