Skip to main content
Solve for x (complex solution)
Tick mark Image
Graph

Similar Problems from Web Search

Share

x\times 4x+5\times 6+3x\times 5x=0
Variable x cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by 5x, the least common multiple of 5,x.
x^{2}\times 4+5\times 6+3x\times 5x=0
Multiply x and x to get x^{2}.
x^{2}\times 4+30+3x\times 5x=0
Multiply 5 and 6 to get 30.
x^{2}\times 4+30+3x^{2}\times 5=0
Multiply x and x to get x^{2}.
x^{2}\times 4+30+15x^{2}=0
Multiply 3 and 5 to get 15.
19x^{2}+30=0
Combine x^{2}\times 4 and 15x^{2} to get 19x^{2}.
19x^{2}=-30
Subtract 30 from both sides. Anything subtracted from zero gives its negation.
x^{2}=-\frac{30}{19}
Divide both sides by 19.
x=\frac{\sqrt{570}i}{19} x=-\frac{\sqrt{570}i}{19}
The equation is now solved.
x\times 4x+5\times 6+3x\times 5x=0
Variable x cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by 5x, the least common multiple of 5,x.
x^{2}\times 4+5\times 6+3x\times 5x=0
Multiply x and x to get x^{2}.
x^{2}\times 4+30+3x\times 5x=0
Multiply 5 and 6 to get 30.
x^{2}\times 4+30+3x^{2}\times 5=0
Multiply x and x to get x^{2}.
x^{2}\times 4+30+15x^{2}=0
Multiply 3 and 5 to get 15.
19x^{2}+30=0
Combine x^{2}\times 4 and 15x^{2} to get 19x^{2}.
x=\frac{0±\sqrt{0^{2}-4\times 19\times 30}}{2\times 19}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 19 for a, 0 for b, and 30 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{0±\sqrt{-4\times 19\times 30}}{2\times 19}
Square 0.
x=\frac{0±\sqrt{-76\times 30}}{2\times 19}
Multiply -4 times 19.
x=\frac{0±\sqrt{-2280}}{2\times 19}
Multiply -76 times 30.
x=\frac{0±2\sqrt{570}i}{2\times 19}
Take the square root of -2280.
x=\frac{0±2\sqrt{570}i}{38}
Multiply 2 times 19.
x=\frac{\sqrt{570}i}{19}
Now solve the equation x=\frac{0±2\sqrt{570}i}{38} when ± is plus.
x=-\frac{\sqrt{570}i}{19}
Now solve the equation x=\frac{0±2\sqrt{570}i}{38} when ± is minus.
x=\frac{\sqrt{570}i}{19} x=-\frac{\sqrt{570}i}{19}
The equation is now solved.